Grosser M, Lin H, Wu M, Zhang Y, Tipper S, Venter D, Lu J, Dos Remedios C G
23 Strands Pty Ltd, 107, 26 Pirrama Rd, Pyrmont, NSW Australia.
University Technology Sydney, 15 Broadway, Ultimo, NSW Australia.
Biophys Rev. 2022 Feb 9;14(1):381-401. doi: 10.1007/s12551-022-00933-x. eCollection 2022 Feb.
As developments in artificial intelligence and machine learning become more widespread in healthcare, their potential to transform clinical outcomes also increases. Peripartum cardiomyopathy is a rare and poorly-characterised condition that presents as heart failure in the last trimester prior to delivery or within 5-6 months postpartum. The lack of a definitive understanding of the molecular causes and clinical progress of this condition suggests that bibliometrics will be well-suited to creating new insights into this serious clinical problem. We examine similarities and differences between peripartum and its closely related familial dilated cardiomyopathy and idiopathic dilated cardiomyopathy. Using PubMed as the source of bibliometric data, we apply artificial intelligence-supported natural language processing to compare extracted data and genes association with these cardiomyopathies. Gene data were enhanced with additional metadata from third-party datasets and then analysed for their impact and specificity for peripartum cardiomyopathy. Artificial intelligence identified 14 genes that distinguished peripartum from both dilated and familial dilated cardiomyopathy. They are as follows: , RLN2, MMP23B*, SLC17A5, ST2*, PTHLH, CFH*, CFI, , MR1, Rln1, , STAT5A* and THBD. We then used the Human Protein Atlas website that uses affinity-purified rabbit polyclonal antibodies to identify genes that are expressed at the protein level (bold), or as RNA transcripts (*) in healthy human left ventricles. Additional analysis focussed on the full set of peripartum genes on linkage and specificity to cardiomyopathy yielded a different set of thirteen genes (bold font indicates those expressed in cardiomyocytes: PRL, RLN2, , ST2, , F2, ACE, STAT3, , SPP1, LGALS3, miR-146a, , SRI). This type of analysis can highlight new avenues for research, aimed at improving genomics-driven peripartum cardiomyopathy diagnosis as well as potential pathological and clinical sub-classification. We expect that this will allow for future improvements in identification, treatment and management of this condition. The first step in the application of these bibliometric-based artificial intelligence methods is to understand the current knowledge, and it is the aim of this paper to show how this might be achieved.
随着人工智能和机器学习在医疗保健领域的应用越来越广泛,它们改变临床结果的潜力也在增加。围产期心肌病是一种罕见且特征不明确的疾病,表现为分娩前最后三个月或产后5至6个月内的心力衰竭。对这种疾病的分子病因和临床进展缺乏明确的了解,这表明文献计量学将非常适合于对这个严重的临床问题产生新的见解。我们研究了围产期心肌病与其密切相关的家族性扩张型心肌病和特发性扩张型心肌病之间的异同。以PubMed作为文献计量数据的来源,我们应用人工智能支持的自然语言处理来比较提取的数据以及与这些心肌病相关的基因。基因数据通过来自第三方数据集的额外元数据得到增强,然后分析它们对围产期心肌病的影响和特异性。人工智能识别出14个将围产期心肌病与扩张型心肌病和家族性扩张型心肌病区分开来的基因。它们如下:RLN2、MMP23B*、SLC17A5、ST2*、PTHLH、CFH*、CFI、、MR1、Rln1、、STAT5A和THBD。然后我们使用人类蛋白质图谱网站,该网站使用亲和纯化的兔多克隆抗体来识别在健康人类左心室中以蛋白质水平(加粗)或作为RNA转录本()表达的基因。对与心肌病相关的围产期基因的连锁和特异性进行的进一步分析产生了另一组13个基因(加粗字体表示那些在心肌细胞中表达的基因:PRL、RLN2、、ST2、、F2、ACE、STAT3、、SPP1、LGALS3、miR-146a、、SRI)。这种类型的分析可以突出新的研究途径,旨在改善基于基因组学的围产期心肌病诊断以及潜在的病理和临床亚分类。我们预计这将有助于未来在这种疾病的识别、治疗和管理方面取得改进。应用这些基于文献计量学的人工智能方法的第一步是了解当前的知识,本文的目的就是展示如何实现这一点。