Moktan Hem, Jayarathna Sandun, Cho Sang Hyun
Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
Nucl Instrum Methods Phys Res A. 2022 Feb 11;1025. doi: 10.1016/j.nima.2021.166198. Epub 2021 Dec 13.
In this work, an energy-resolving thermoelectrically cooled single crystal cadmium telluride (CdTe) detector system upgraded with the latest firmware was optimized for high x-ray flux operations using high bias voltage and fast peaking time. This detector system was deployed into an experimental benchtop x-ray fluorescence (XRF) imaging/computed tomography (XFCT) system developed for quantitative imaging of metal nanoprobes such as gold nanoparticles (GNPs). Using the firmware-upgraded and existing/old CdTe detector systems, the Compton/XRF spectra from small (8 mm diameter) GNP-containing phantoms were acquired. The phantoms were irradiated with 1.8 mm Sn-filtered 125 kVp cone beam x-rays at 24 mA. The firmware-upgraded detector system produced relatively lower dead time under high x-ray flux, compared with the old detector system, and performed well with the spectral resolution of ~0.7 keV (in full width at half maximum) at 69 keV photon energy. Given the same 2 mm aperture detector collimator and irradiation time of 10 s, this detector system managed to score nearly 50% more gold XRF signals than the existing one at all GNP concentrations tested. This improvement resulted in the GNP detection limit of 0.02 wt. % which was lower than that (0.03 wt. %) achievable with the existing detector system. When combined with the detector collimator containing a larger (3 mm) aperture, the firmware-upgraded detector system produced drastically more gold XRF signal at a given GNP concentration (e.g., 9 times more for 1 wt. % GNP solution and irradiation time of 10 s), leading to further reduction in the GNP detection limit (i.e., 0.01 wt. %). The present investigation showed that the firmware upgraded CdTe detector system optimized for high x-ray flux operations allowed for better photon counting efficiency, thus leading to sensitivity enhancement of an experimental benchtop XRF/XFCT imaging system.
在这项工作中,一个采用最新固件升级的能量分辨型热电冷却单晶碲化镉(CdTe)探测器系统,通过使用高偏置电压和快速峰值时间,针对高X射线通量操作进行了优化。该探测器系统被部署到一个为金属纳米探针(如金纳米颗粒(GNP))的定量成像而开发的实验台式X射线荧光(XRF)成像/计算机断层扫描(XFCT)系统中。使用固件升级后的以及现有的/旧的CdTe探测器系统,从小的(直径8毫米)含GNP的体模中采集了康普顿/XRF光谱。这些体模用24毫安的1.8毫米锡过滤的125 kVp锥形束X射线进行照射。与旧的探测器系统相比,固件升级后的探测器系统在高X射线通量下产生的死时间相对较低,并且在69 keV光子能量下具有约0.7 keV(半高宽)的光谱分辨率,表现良好。在相同的2毫米孔径探测器准直器和10秒的照射时间下,该探测器系统在所有测试的GNP浓度下,比现有的探测器系统成功获得的金XRF信号多出近50%。这一改进使得GNP的检测限达到0.02 wt.%,低于现有探测器系统所能达到的检测限(0.03 wt.%)。当与含有更大(3毫米)孔径的探测器准直器结合使用时,固件升级后的探测器系统在给定的GNP浓度下(例如,对于1 wt.%的GNP溶液和10秒的照射时间,信号多出9倍)产生的金XRF信号大幅增加,从而导致GNP检测限进一步降低(即0.01 wt.%)。本研究表明,针对高X射线通量操作进行优化的固件升级后的CdTe探测器系统具有更好的光子计数效率,从而提高了实验台式XRF/XFCT成像系统的灵敏度。