Hertz Hans M, Larsson Jakob C, Lundström Ulf, Larsson Daniel H, Vogt Carmen
Opt Lett. 2014 May 1;39(9):2790-3. doi: 10.1364/OL.39.002790.
We demonstrate that nanoparticle x-ray fluorescence computed tomography in mouse-sized objects can be performed with very high spatial resolution at acceptable dose and exposure times with a compact laboratory system. The method relies on the combination of the 24 keV line-emission from a high-brightness liquid-metal-jet x-ray source, pencil-beam-forming x-ray optics, photon-counting energy-dispersive detection, and carefully matched (Mo) nanoparticles. Phantom experiments and simulations show that the arrangement significantly reduces Compton background and allows 100 μm detail imaging at dose and exposure times compatible with small-animal experiments. The method provides a possible path to in vivo molecular x-ray imaging at sub-100 μm resolution in mice.
我们证明,使用紧凑的实验室系统,在可接受的剂量和曝光时间下,能够以非常高的空间分辨率对小鼠大小的物体进行纳米粒子X射线荧光计算机断层扫描。该方法依赖于高亮度液态金属喷射X射线源的24 keV线发射、笔形束形成X射线光学器件、光子计数能量色散检测以及精心匹配的(钼)纳米粒子的组合。体模实验和模拟表明,这种配置显著降低了康普顿背景,并允许在与小动物实验兼容的剂量和曝光时间下进行100μm的细节成像。该方法为在小鼠体内以亚100μm分辨率进行分子X射线成像提供了一条可能的途径。