文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Current advances in the imaging of atherosclerotic vulnerable plaque using nanoparticles.

作者信息

Zhang Ming, Xie Zhongjian, Long Haijiao, Ren Kun, Hou Lianjie, Wang Yu, Xu Xiaodan, Lei Weixing, Yang Zhicheng, Ahmed Shakeel, Zhang Han, Zhao Guojun

机构信息

The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511500, Guangdong, China.

Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen, 518038, Guangdong, China.

出版信息

Mater Today Bio. 2022 Mar 7;14:100236. doi: 10.1016/j.mtbio.2022.100236. eCollection 2022 Mar.


DOI:10.1016/j.mtbio.2022.100236
PMID:35341094
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8943324/
Abstract

Vulnerable atherosclerotic plaques of the artery wall that pose a significant risk of cardio-cerebral vascular accidents remain the global leading cause of morbidity and mortality. Thus, early delineation of vulnerable atherosclerotic plaques is of clinical importance for prevention and treatment. The currently available imaging technologies mainly focus on the structural assessment of the vascular wall. Unfortunately, several disadvantages in these strategies limit the improvement in imaging effect. Nanoparticle technology is a novel diagnostic strategy for targeting and imaging pathological biomarkers. New functionalized nanoparticles that detect hallmarks of vulnerable plaques are promising for advance further control of this critical illness. The review aims to address the current opportunities and challenges for the use of nanoparticle technology in imagining vulnerable plaques.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0fa0/8943324/a5b5418078b2/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0fa0/8943324/baea6bac0c1c/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0fa0/8943324/4795db2ade13/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0fa0/8943324/24d246babd9a/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0fa0/8943324/0603afb2c377/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0fa0/8943324/6e970712a181/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0fa0/8943324/733b418c5af2/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0fa0/8943324/44b4faee49c0/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0fa0/8943324/ceaa9eb361e7/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0fa0/8943324/a5b5418078b2/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0fa0/8943324/baea6bac0c1c/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0fa0/8943324/4795db2ade13/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0fa0/8943324/24d246babd9a/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0fa0/8943324/0603afb2c377/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0fa0/8943324/6e970712a181/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0fa0/8943324/733b418c5af2/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0fa0/8943324/44b4faee49c0/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0fa0/8943324/ceaa9eb361e7/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0fa0/8943324/a5b5418078b2/gr8.jpg

相似文献

[1]
Current advances in the imaging of atherosclerotic vulnerable plaque using nanoparticles.

Mater Today Bio. 2022-3-7

[2]
Advances of nanoparticle-mediated diagnostic and theranostic strategies for atherosclerosis.

Front Bioeng Biotechnol. 2023-11-9

[3]
Interleukin 10-coated nanoparticle systems compared for molecular imaging of atherosclerotic lesions.

Int J Nanomedicine. 2014-9-3

[4]
Improved in vivo detection of atherosclerotic plaques with a tissue factor-targeting magnetic nanoprobe.

Acta Biomater. 2019-4-4

[5]
Targeted Molecular Iron Oxide Contrast Agents for Imaging Atherosclerotic Plaque.

Nanotheranostics. 2020

[6]
Imaging of the vulnerable carotid plaque: biological targeting of inflammation in atherosclerosis using iron oxide particles and MRI.

Eur J Vasc Endovasc Surg. 2014-5

[7]
Advanced targeted nanomedicines for vulnerable atherosclerosis plaque imaging and their potential clinical implications.

Front Pharmacol. 2022-10-13

[8]
Current Advances in the Diagnostic Imaging of Atherosclerosis: Insights into the Pathophysiology of Vulnerable Plaque.

Int J Mol Sci. 2020-4-23

[9]
A review of molecular imaging of atherosclerosis and the potential application of dendrimer in imaging of plaque.

Int J Nanomedicine. 2017-10-19

[10]
Folate receptor–targeted single-photon emission computed tomography/computed tomography to detect activated macrophages in atherosclerosis: can it distinguish vulnerable from stable atherosclerotic plaques?

Mol Imaging. 2014

引用本文的文献

[1]
Recent Advances in Nanozymes for the Treatment of Atherosclerosis.

Int J Nanomedicine. 2025-7-29

[2]
Beyond the Lumen: Molecular Imaging to Unmask Vulnerable Coronary Plaques.

J Cardiovasc Dev Dis. 2025-1-30

[3]
The influence between plaque rupture and non-plaque rupture on clinical outcomes in patients with ST-segment elevation myocardial infarction after primary percutaneous coronary intervention: a prospective cohort study.

J Thorac Dis. 2024-11-30

[4]
Detection of atherosclerotic plaques with HDL-like porphyrin nanoparticles using an intravascular dual-modality optical coherence tomography and fluorescence system.

Sci Rep. 2024-5-29

[5]
Sex Influences the Safety and Therapeutic Efficacy of Cardiac Nanomedicine Technologies.

Small. 2024-10

[6]
Novel Imaging-Based Biomarkers for Identifying Carotid Plaque Vulnerability.

Biomolecules. 2023-8-10

[7]
A Comparative Study of Ultrasmall Calcium Carbonate Nanoparticles for Targeting and Imaging Atherosclerotic Plaque.

ACS Nano. 2023-7-25

[8]
Diagnostics of atherosclerosis: Overview of the existing methods.

Front Cardiovasc Med. 2023-5-9

[9]
Engineering molecular nanoprobes to target early atherosclerosis: Precise diagnostic tools and promising therapeutic carriers.

Nanotheranostics. 2023

[10]
Assessment of the correlation between arterial lumen density and its metabolic activity in atherosclerotic patients using F-FDG positron emission tomography/computed tomography.

Am J Nucl Med Mol Imaging. 2023-2-15

本文引用的文献

[1]
Chemistry, Functionalization, and Applications of Recent Monoelemental Two-Dimensional Materials and Their Heterostructures.

Chem Rev. 2022-1-12

[2]
Charge-reversal biodegradable MSNs for tumor synergetic chemo/photothermal and visualized therapy.

J Control Release. 2021-10-10

[3]
New insight into biology, molecular diagnostics and treatment options of unstable carotid atherosclerotic plaque: a narrative review.

Ann Transl Med. 2021-7

[4]
Myricitrin inhibits vascular endothelial growth factor-induced angiogenesis of human umbilical vein endothelial cells and mice.

Biomed Pharmacother. 2020-10

[5]
Role of coronary artery calcium score in the primary prevention of cardiovascular disease.

BMJ. 2021-5-4

[6]
In Vivo Molecular K-Edge Imaging of Atherosclerotic Plaque Using Photon-counting CT.

Radiology. 2021-7

[7]
Quercetin Attenuates Atherosclerotic Inflammation by Inhibiting Galectin-3-NLRP3 Signaling Pathway.

Mol Nutr Food Res. 2021-8

[8]
Multifunctional pathology-mapping theranostic nanoplatforms for US/MR imaging and ultrasound therapy of atherosclerosis.

Nanoscale. 2021-5-14

[9]
An intelligent T-T switchable MRI contrast agent for the non-invasive identification of vulnerable atherosclerotic plaques.

Nanoscale. 2021-4-7

[10]
Targeting Nanostrategies for Imaging of Atherosclerosis.

Contrast Media Mol Imaging. 2021

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索