Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia, Spain.
Euskal Herriko Unibertsitatea (UPV/EHU), 20018 Donostia, Spain.
ACS Nano. 2023 Jul 25;17(14):13811-13825. doi: 10.1021/acsnano.3c03523. Epub 2023 Jul 3.
Atherosclerosis is a complex disease that can lead to life-threatening events, such as myocardial infarction and ischemic stroke. Despite the severity of this disease, diagnosing plaque vulnerability remains challenging due to the lack of effective diagnostic tools. Conventional diagnostic protocols lack specificity and fail to predict the type of atherosclerotic lesion and the risk of plaque rupture. To address this issue, technologies are emerging, such as noninvasive medical imaging of atherosclerotic plaque with customized nanotechnological solutions. Modulating the biological interactions and contrast of nanoparticles in various imaging techniques, including magnetic resonance imaging, is possible through the careful design of their physicochemical properties. However, few examples of comparative studies between nanoparticles targeting different hallmarks of atherosclerosis exist to provide information about the plaque development stage. Our work demonstrates that Gd (III)-doped amorphous calcium carbonate nanoparticles are an effective tool for these comparative studies due to their high magnetic resonance contrast and physicochemical properties. In an animal model of atherosclerosis, we compare the imaging performance of three types of nanoparticles: bare amorphous calcium carbonate and those functionalized with the ligands alendronate (for microcalcification targeting) and trimannose (for inflammation targeting). Our study provides useful insights into ligand-mediated targeted imaging of atherosclerosis through a combination of imaging, tissue analysis, and targeting experiments.
动脉粥样硬化是一种复杂的疾病,可导致危及生命的事件,如心肌梗死和缺血性中风。尽管这种疾病很严重,但由于缺乏有效的诊断工具,诊断斑块易损性仍然具有挑战性。传统的诊断方案缺乏特异性,无法预测动脉粥样硬化病变的类型和斑块破裂的风险。为了解决这个问题,出现了一些技术,例如使用定制的纳米技术解决方案对动脉粥样硬化斑块进行非侵入性医学成像。通过仔细设计纳米颗粒的物理化学特性,可以在各种成像技术中调节生物相互作用和纳米颗粒的对比度,包括磁共振成像。然而,针对动脉粥样硬化不同标志物的靶向纳米颗粒之间的比较研究的例子很少,无法提供有关斑块发展阶段的信息。我们的工作表明,掺钆(III)的无定形碳酸钙纳米颗粒是这些比较研究的有效工具,因为它们具有高磁共振对比和物理化学特性。在动脉粥样硬化动物模型中,我们比较了三种类型的纳米颗粒的成像性能:裸露的无定形碳酸钙纳米颗粒和用配体阿仑膦酸盐(用于微钙化靶向)和三糖(用于炎症靶向)功能化的纳米颗粒。我们的研究通过结合成像、组织分析和靶向实验,为通过配体介导的动脉粥样硬化靶向成像提供了有用的见解。
ACS Appl Mater Interfaces. 2024-3-20
Nanotheranostics. 2020
Contrast Media Mol Imaging. 2021
Nanomedicine (Lond). 2015
Mater Today Bio. 2022-3-7
ACS Appl Mater Interfaces. 2021-9-29
Nature. 2021-4
ACS Nano. 2021-3-23