Suppr超能文献

连续培养中进化的依赖于甲酸的大肠杆菌菌株的遗传和生物催化基础。

Genetic and biocatalytic basis of formate dependent growth of Escherichia coli strains evolved in continuous culture.

机构信息

Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry-Courcouronnes, France.

Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry-Courcouronnes, France.

出版信息

Metab Eng. 2022 Jul;72:200-214. doi: 10.1016/j.ymben.2022.03.010. Epub 2022 Mar 24.

Abstract

The reductive glycine pathway was described as the most energetically favorable synthetic route of aerobic formate assimilation. Here we report the successful implementation of formatotrophy in Escherichia coli by means of a stepwise adaptive evolution strategy. Medium swap and turbidostat regimes of continuous culture were applied to force the channeling of carbon flux through the synthetic pathway to pyruvate establishing growth on formate and CO as sole carbon sources. Labeling with C-formate proved the assimilation of the C1 substrate via the pathway metabolites. Genetic analysis of intermediate isolates revealed a mutational path followed throughout the adaptation process. Mutations were detected affecting the copy number (gene ftfL) or the coding sequence (genes folD and lpd) of genes which specify enzymes implicated in the three steps forming glycine from formate and CO, the central metabolite of the synthetic pathway. The mutation R191S present in methylene-tetrahydrofolate dehydrogenase/cyclohydrolase (FolD) abolishes the inhibition of cyclohydrolase activity by the substrate formyl-tetrahydrofolate. The mutation R273H in lipoamide dehydrogenase (Lpd) alters substrate affinities as well as kinetics at physiological substrate concentrations likely favoring a reactional shift towards lipoamide reduction. In addition, genetic reconstructions proved the necessity of all three mutations for formate assimilation by the adapted cells. The largely unpredictable nature of these changes demonstrates the usefulness of the evolutionary approach enabling the selection of adaptive mutations crucial for pathway engineering of biotechnological model organisms.

摘要

还原性甘氨酸途径被描述为有氧甲酸同化最具能量优势的合成途径。在这里,我们通过逐步适应性进化策略成功地在大肠杆菌中实现了格式营养。通过培养基交换和连续培养的浊度计培养方式,迫使碳通量通过合成途径流向丙酮酸,从而建立了以甲酸和 CO 为唯一碳源的生长。用 C-甲酸进行标记证明了通过途径代谢物同化 C1 底物。对中间分离株的遗传分析揭示了整个适应过程中遵循的突变途径。检测到的突变影响了指定参与从甲酸和 CO 形成甘氨酸的三个步骤的酶的基因 ftfL 的拷贝数(基因 ftfL)或编码序列(folD 和 lpd 基因),这些酶是合成途径的中心代谢物。存在于亚甲基四氢叶酸脱氢酶/环化酶(FolD)中的 R191S 突变使环化酶活性被底物甲酰四氢叶酸抑制。位于脂酰脱氢酶(Lpd)中的 R273H 突变改变了底物亲和力以及在生理底物浓度下的动力学,可能有利于向脂酰还原的反应转移。此外,遗传重建证明了适应细胞同化甲酸所需的所有三个突变。这些变化的很大程度上不可预测的性质证明了进化方法的有用性,这种方法能够选择对生物技术模型生物途径工程至关重要的适应性突变。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验