Suppr超能文献

大肠杆菌中外源和内源甲酸的工程化同化作用

Engineered Assimilation of Exogenous and Endogenous Formate in Escherichia coli.

作者信息

Yishai Oren, Goldbach Leander, Tenenboim Hezi, Lindner Steffen N, Bar-Even Arren

机构信息

Max Planck Institute of Molecular Plant Physiology , Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.

出版信息

ACS Synth Biol. 2017 Sep 15;6(9):1722-1731. doi: 10.1021/acssynbio.7b00086. Epub 2017 Jun 12.

Abstract

Decoupling biorefineries from land use and agriculture is a major challenge. As formate can be produced from various sources, e.g., electrochemical reduction of CO, microbial formate-assimilation has the potential to become a sustainable feedstock for the bioindustry. However, organisms that naturally grow on formate are limited by either a low biomass yield or by a narrow product spectrum. The engineering of a model biotechnological microbe for growth on formate via synthetic pathways represents a promising approach to tackle this challenge. Here, we achieve a critical milestone for two such synthetic formate-assimilation pathways in Escherichia coli. Our engineering strategy involves the division of the pathways into metabolic modules; the activity of each module-providing at least one essential building block-is selected for in an appropriate auxotrophic strain. We demonstrate that formate can serve as a sole source of all cellular C1-compounds, including the beta-carbon of serine. We further show that by overexpressing the native threonine cleavage enzymes, the entire cellular glycine requirement can be provided by threonine biosynthesis and degradation. Together, we confirm the simultaneous activity of all pathway segments of the synthetic serine-threonine cycle. We go beyond the formate bioeconomy concept by showing that, under anaerobic conditions, formate produced endogenously by pyruvate formate-lyase can replace exogenous formate. The resulting prototrophic strain constitutes a substantial rewiring of central metabolism in which C1, glycine, and serine metabolism proceed via a unique set of pathways. This strain can serve as a platform for future metabolic-engineering efforts and could further pave the way for investigating the plasticity of metabolic networks.

摘要

使生物精炼厂与土地利用和农业脱钩是一项重大挑战。由于甲酸盐可从多种来源产生,例如通过一氧化碳的电化学还原,微生物对甲酸盐的同化作用有潜力成为生物产业的可持续原料。然而,天然以甲酸盐为食生长的生物体受到低生物量产量或狭窄产品谱的限制。通过合成途径设计一种用于在甲酸盐上生长的模式生物技术微生物是应对这一挑战的一种有前途的方法。在这里,我们在大肠杆菌中为两条这样的合成甲酸盐同化途径实现了一个关键的里程碑。我们的工程策略包括将途径划分为代谢模块;在合适的营养缺陷型菌株中选择每个提供至少一种必需构件的模块的活性。我们证明甲酸盐可以作为所有细胞C1化合物的唯一来源,包括丝氨酸的β-碳。我们进一步表明,通过过表达天然苏氨酸裂解酶,整个细胞对甘氨酸的需求可以由苏氨酸的生物合成和降解来提供。我们共同证实了合成丝氨酸-苏氨酸循环所有途径段的同时活性。我们超越了甲酸盐生物经济概念,表明在厌氧条件下,由丙酮酸甲酸裂解酶内源性产生的甲酸盐可以替代外源性甲酸盐。由此产生的原养型菌株构成了中心代谢的重大重新布线,其中C1、甘氨酸和丝氨酸代谢通过一组独特的途径进行。该菌株可作为未来代谢工程工作的平台,并可为研究代谢网络的可塑性进一步铺平道路。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验