Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology, 34141 Daejeon, Republic of Korea.
Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Korea Advanced Institute of Science and Technology, 34141 Daejeon, Republic of Korea.
Proc Natl Acad Sci U S A. 2018 Oct 2;115(40):E9271-E9279. doi: 10.1073/pnas.1810386115. Epub 2018 Sep 17.
Gaseous one-carbon (C1) compounds or formic acid (FA) converted from CO can be an attractive raw material for bio-based chemicals. Here, we report the development of strains assimilating FA and CO through the reconstructed tetrahydrofolate (THF) cycle and reverse glycine cleavage (gcv) pathway. The formate-THF ligase, methenyl-THF cyclohydrolase, and methylene-THF dehydrogenase genes were expressed to allow FA assimilation. The gcv reaction was reversed by knocking out the repressor gene () and overexpressing the genes. This engineered strain synthesized 96% and 86% of proteinogenic glycine and serine, respectively, from FA and CO in a glucose-containing medium. Native serine deaminase converted serine to pyruvate, showing 4.5% of pyruvate-forming flux comes from FA and CO The pyruvate-forming flux from FA and CO could be increased to 14.9% by knocking out , , and , chromosomally expressing under , and overexpressing the reconstructed THF cycle, , and genes in one vector. To reduce glucose usage required for energy and redox generation, the formate dehydrogenase (Fdh) gene was expressed. The resulting strain showed specific glucose, FA, and CO consumption rates of 370.2, 145.6, and 14.9 mg⋅g dry cell weight (DCW)⋅h, respectively. The C1 assimilation pathway consumed 21.3 wt% of FA. Furthermore, cells sustained slight growth using only FA and CO after glucose depletion, suggesting that combined use of the C1 assimilation pathway and Fdh will be useful for eventually developing a strain capable of utilizing FA and CO without an additional carbon source such as glucose.
气态一碳 (C1) 化合物或甲酸 (FA) 可由 CO 转化而来,是生物基化学品有吸引力的原料。在这里,我们报告了通过重建四氢叶酸 (THF) 循环和反向甘氨酸裂解 (gcv) 途径同化 FA 和 CO 的 菌株的开发。表达甲酸盐-THF 连接酶、亚甲基-THF 环化水解酶和亚甲基-THF 脱氢酶基因以允许 FA 同化。通过敲除抑制剂基因 () 和过表达 基因来逆转 gcv 反应。该工程菌株分别从含葡萄糖的培养基中的 FA 和 CO 合成了 96%和 86%的蛋白质糖甘氨酸和丝氨酸。天然丝氨酸脱氨酶将丝氨酸转化为丙酮酸,表明 4.5%的丙酮酸形成通量来自 FA 和 CO。通过敲除 、 、 和 ,在一个载体中染色体表达 ,并过表达重建的 THF 循环、 、 和 基因,可将 FA 和 CO 的丙酮酸形成通量增加到 14.9%。为了减少生成能量和氧化还原所需的葡萄糖用量,表达了 甲酸脱氢酶 (Fdh) 基因。得到的菌株表现出特定的葡萄糖、FA 和 CO 消耗率分别为 370.2、145.6 和 14.9mg·g 干细胞重量 (DCW)·h。C1 同化途径消耗了 21.3wt%的 FA。此外,在葡萄糖耗尽后,细胞仅使用 FA 和 CO 维持轻微生长,这表明 C1 同化途径和 Fdh 的联合使用将有助于最终开发出一种能够在没有葡萄糖等额外碳源的情况下利用 FA 和 CO 的菌株。