Suppr超能文献

定量超分辨率显微镜揭示了促进线粒体连通性可预防 AKI。

Quantitative super-resolution microscopy reveals promoting mitochondrial interconnectivity protects against AKI.

机构信息

Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee.

Cell Imaging Shared Resource, Vanderbilt University, Nashville, Tennessee.

出版信息

Kidney360. 2021 Dec;2(12):1892-1907. doi: 10.34067/KID.0001602021. Epub 2021 Dec 30.

Abstract

BACKGROUND

The root of many kidney diseases in humans can be traced to alterations or damage to subcellular organelles. Mitochondrial fragmentation, endoplasmic reticulum (ER) stress, and lysosomal inhibition, among others, ultimately contribute to kidney injury and are the target of therapeutics in development. Although recent technological advancements allow for the understanding of disease states at the cellular level, investigating changes in subcellular organelles from kidney tissue remains challenging.

METHODS

Using structured illumination microscopy, we imaged mitochondria and other organelles from paraffin sections of mouse tissue and human kidney biopsy specimens. The resulting images were 3D rendered to quantify mitochondrial size, content, and morphology. Results were compared with those from transmission electron microscopy and segmentation.

RESULTS

Super-resolution imaging reveals kidney tubular epithelial cell mitochondria in rodent and human kidney tissue form large, interconnected networks under basal conditions, which are fragmented with injury. This approach can be expanded to other organelles and cellular structures including autophagosomes, ER, brush border, and cell morphology. We find that, during unilateral ischemia, mitochondrial fragmentation occurs in most tubule cells, and they remain fragmented for >96 hours. Promoting mitochondrial fusion with the fusion promotor M1 preserves mitochondrial morphology and interconnectivity and protects against cisplatin-induced kidney injury.

CONCLUSIONS

We provide, for the first time, a nonbiased, semiautomated approach for quantification of the 3D morphology of mitochondria in kidney tissue. Maintaining mitochondrial interconnectivity and morphology protects against kidney injury. Super-resolution imaging has the potential to both drive discovery of novel pathobiologic mechanisms in kidney tissue and broaden the diagnoses that can be made on human biopsy specimens.

摘要

背景

人类许多肾脏疾病的根源可追溯到亚细胞细胞器的改变或损伤。线粒体碎片化、内质网(ER)应激和溶酶体抑制等最终导致肾脏损伤,是正在开发的治疗方法的靶点。尽管最近的技术进步允许在细胞水平上理解疾病状态,但从肾脏组织中研究亚细胞细胞器的变化仍然具有挑战性。

方法

我们使用结构照明显微镜对来自小鼠组织和人肾活检标本的石蜡切片中的线粒体和其他细胞器进行成像。生成的图像以 3D 形式呈现,以量化线粒体的大小、含量和形态。结果与透射电子显微镜和分割进行了比较。

结果

超分辨率成像揭示了在基础条件下,啮齿动物和人肾脏组织中的肾小管上皮细胞线粒体形成大的相互连接的网络,而在损伤时则发生碎片化。这种方法可以扩展到其他细胞器和细胞结构,包括自噬体、ER、刷状缘和细胞形态。我们发现,在单侧缺血期间,大多数肾小管细胞中发生线粒体碎片化,并且它们在 >96 小时内保持碎片化。用融合促进剂 M1 促进线粒体融合可保持线粒体形态和连通性,并可预防顺铂引起的肾损伤。

结论

我们首次提供了一种非侵入性、半自动的方法来定量分析肾脏组织中线粒体的 3D 形态。保持线粒体的连通性和形态可以防止肾脏损伤。超分辨率成像有可能推动在肾脏组织中发现新的病理生物学机制,并拓宽对人类活检标本的诊断。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a50/8986035/2dc32d13fd4a/KID.0001602021absf1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验