Suppr超能文献

热等离子体加热能达到何种程度:金纳米颗粒等离子体加热导致的P25 TiO₂的相变与熔化

How Hot Plasmonic Heating Can Be: Phase Transition and Melting of P25 TiO from Plasmonic Heating of Au Nanoparticles.

作者信息

Lu Weigang, Kayastha Rohil, Birmingham Blake, Zechmann Bernd, Zhang Zhenrong

机构信息

Department of Physics, Baylor University, Waco, Texas 76798, United States.

Center for Microscopy and Imaging, Baylor University, Waco, Texas 76798, United States.

出版信息

ACS Appl Mater Interfaces. 2025 Jun 4;17(22):33047-33058. doi: 10.1021/acsami.5c03004. Epub 2025 May 19.

Abstract

Plasmonic heating has been utilized in many applications, including photocatalysis, photothermal therapy, and photocuring. However, the heat dissipation process of plasmonic nanoparticles (NPs) and the surrounding matrix is complex. How high the temperature of the matrix that surrounds the plasmonic NPs, such as the catalyst and substrate, can reach is unclear. Herein, we study the dissipation of plasmonic heat generated by resonantly excited gold (Au) NPs dispersed on a P25 TiO NP porous film in air. Under resonant 532 nm continuous wave (CW) laser irradiation at the surface of Au-TiO, the surface evaporation and the aggregation of Au NPs were observed at moderate laser power. This process is accompanied by the phase transition of TiO. More importantly, the TiO NP film melted, forming melt pools and a molten TiO matrix. This indicates that the temperature of TiO reached as high as its melting point of 1830 °C. When Au/TiO was irradiated with an off-resonance laser at 638 nm, no phase transformation or melting of TiO was observed. The temperature calculation showed that the heating generated by Au NPs is not localized. The collective heating from an ensemble of Au NPs in the irradiated area produced a global temperature increase that melted TiO. Our results suggest that the photothermal effect could be a significant mechanism in the plasmon-assisted photocatalytic reactions.

摘要

等离子体加热已被应用于许多领域,包括光催化、光热疗法和光固化。然而,等离子体纳米颗粒(NPs)与周围基质的散热过程很复杂。尚不清楚围绕等离子体NPs的基质(如催化剂和底物)能达到多高的温度。在此,我们研究了分散在空气氛围中的P25 TiO NP多孔膜上的共振激发金(Au)NPs产生的等离子体热的耗散情况。在Au-TiO表面用532 nm连续波(CW)激光进行共振照射时,在中等激光功率下观察到了Au NPs的表面蒸发和聚集现象。此过程伴随着TiO的相变。更重要的是,TiO NP膜熔化,形成熔池和熔融的TiO基质。这表明TiO的温度高达其熔点1830℃。当用638 nm的非共振激光照射Au/TiO时,未观察到TiO的相变或熔化现象。温度计算表明,Au NPs产生的加热并非局限于局部。照射区域内Au NPs集合体的集体加热导致了整体温度升高,从而使TiO熔化。我们的结果表明,光热效应可能是等离子体辅助光催化反应中的一个重要机制。

相似文献

8
Photothermal-Assisted Optical Stretching of Gold Nanoparticles.金纳米颗粒的光热辅助光学拉伸
ACS Nano. 2019 Jan 22;13(1):32-37. doi: 10.1021/acsnano.8b06087. Epub 2018 Nov 7.

本文引用的文献

1
Photothermal Properties of Solid-Supported Gold Nanorods.固体支撑金纳米棒的光热性质
Nano Lett. 2024 Oct 9;24(40):12529-12535. doi: 10.1021/acs.nanolett.4c03472. Epub 2024 Sep 30.
3
Thermometries for Single Nanoparticles Heated with Light.用光加热的单个纳米粒子的测温法。
ACS Sens. 2024 Mar 22;9(3):1049-1064. doi: 10.1021/acssensors.4c00012. Epub 2024 Mar 14.
5
Pulsed Photothermal Heterogeneous Catalysis.脉冲光热多相催化
ACS Catal. 2023 Feb 22;13(5):3419-3432. doi: 10.1021/acscatal.2c05435. eCollection 2023 Mar 3.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验