Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
mBio. 2022 Apr 26;13(2):e0377121. doi: 10.1128/mbio.03771-21. Epub 2022 Mar 28.
Healthcare-associated outbreaks of vancomycin-resistant Enterococcus faecium (VREfm) are a worldwide problem with increasing prevalence. The genomic plasticity of this hospital-adapted pathogen contributes to its efficient spread despite infection control measures. Here, we aimed to identify the genomic and phenotypic determinants of health care-associated transmission of VREfm. We assessed the VREfm transmission networks at the tertiary-care University Hospital of Zurich (USZ) between October 2014 and February 2018 and investigated microevolutionary dynamics of this pathogen. We performed whole-genome sequencing for the 69 VREfm isolates collected during this time frame and assessed the population structure and variability of the vancomycin resistance transposon. Phylogenomic analysis allowed us to reconstruct transmission networks and to unveil external or wider transmission networks undetectable by routine surveillance. Notably, it unveiled a , sampled 31 times over a 29-month period. Exploring the evolutionary dynamics of this clone and characterizing the phenotypic consequences revealed the spread of a variant with decreased daptomycin susceptibility and the acquired ability to utilize N-acetyl-galactosamine (GalNAc), one of the primary constituents of the human gut mucins. This nutrient utilization advantage was conferred by a novel plasmid, termed pELF_USZ, which exhibited a linear topology. This plasmid, which was harbored by two distinct clones, was transferable by conjugation. Overall, this work highlights the potential of combining epidemiological, functional genomic, and evolutionary perspectives to unveil adaptation strategies of VREfm. Sequencing microbial pathogens causing outbreaks has become a common practice to characterize transmission networks. In addition to the signal provided by vertical evolution, bacterial genomes harbor mobile genetic elements shared horizontally between clones. While macroevolutionary studies have revealed an important role of plasmids and genes encoding carbohydrate utilization systems in the adaptation of Enterococcus faecium to the hospital environment, mechanisms of dissemination and the specific function of many of these genetic determinants remain to be elucidated. Here, we characterize a plasmid providing a nutrient utilization advantage and show evidence for its clonal and horizontal spread at a local scale. Further studies integrating epidemiological, functional genomics, and evolutionary perspectives will be critical to identify changes shaping the success of this pathogen.
卫生保健相关的万古霉素耐药粪肠球菌(VREfm)爆发是一个全球性的问题,其流行率不断上升。这种医院适应病原体的基因组可塑性导致其尽管采取了感染控制措施,但仍能有效地传播。在这里,我们旨在确定卫生保健相关 VREfm 传播的基因组和表型决定因素。我们评估了 2014 年 10 月至 2018 年 2 月期间苏黎世大学医院(USZ)三级保健医院的 VREfm 传播网络,并研究了这种病原体的微观进化动态。我们对这段时间内收集的 69 株 VREfm 分离株进行了全基因组测序,并评估了万古霉素耐药转座子的种群结构和变异性。系统基因组分析使我们能够重建传播网络,并揭示常规监测无法检测到的外部或更广泛的传播网络。值得注意的是,它揭示了一个 clone 的存在,该 clone 在 29 个月的时间里被采样了 31 次。探索这个克隆的进化动态并描述表型后果表明,一种对达托霉素敏感性降低的变体和利用 N-乙酰半乳糖胺(GalNAc)的能力(人类肠道粘蛋白的主要成分之一)的获得。这种营养利用优势是由一种新的质粒赋予的,称为 pELF_USZ,它表现出线性拓扑。这个质粒,由两个不同的克隆携带,可通过共轭转移。总的来说,这项工作强调了结合流行病学、功能基因组学和进化观点来揭示 VREfm 适应策略的潜力。 对引起爆发的微生物病原体进行测序已成为描述传播网络的常见做法。除了垂直进化提供的信号外,细菌基因组还包含在克隆之间水平共享的可移动遗传元件。虽然宏观进化研究揭示了质粒和编码碳水化合物利用系统的基因在粪肠球菌适应医院环境中的重要作用,但传播机制和许多这些遗传决定因素的具体功能仍有待阐明。在这里,我们描述了一个提供营养利用优势的质粒,并提供了其在局部范围内克隆和水平传播的证据。进一步整合流行病学、功能基因组学和进化观点的研究对于确定塑造这种病原体成功的变化将是至关重要的。