Suppr超能文献

使用陆上检查评估离岸二项式抽样生物安保检查的质量。

Assessing the quality of offshore Binomial sampling biosecurity inspections using onshore inspections.

机构信息

CEBRA & School of Ecosystem and Forest Sciences, The University of Melbourne, Parkville, Victoria, Australia.

Australian Bureau of Agricultural and Resource Economics and Sciences, Canberra, Australian Capital Territory, Australia.

出版信息

Ecol Appl. 2022 Jul;32(5):e2595. doi: 10.1002/eap.2595. Epub 2022 May 16.

Abstract

Introduction of pests and diseases through trade is one of the main socio-ecological challenges worldwide. Although Binomial sampling inspection at the border can reduce pest entry risk, it is common for consignments to fail inspection, wasting resources for both exporter and importer. Outsourcing the inspection to the exporting country could reduce the cost of inspection for both parties. However, there is then a need to assess the quality of the offshore inspection. In this paper, we develop an inverse method combining past inspection data on the pathway, an onshore inspection sample, and the Beta-Binomial model to infer the sample size of the offshore inspection. We illustrate the method on two case studies: the importation of live plants through germplasm into Australia and the importation of pelleted seeds in New Zealand. In these case studies, we found that detecting four to five infested units in a single onshore inspection was typically sufficient to significantly doubt the presence of a compliant offshore inspection. We also ran a simulation experiment to quantify the statistical power to reject or accept the presence of compliant offshore inspection in practice: In highly infested pathways, we could detect the absence of offshore inspections after inspecting five consignments onshore. Less infested pathways required inspecting 20 to 60 consignments onshore. Our study demonstrates that Binomial sampling onshore can be used to assess the quality of offshore inspections.

摘要

通过贸易引入病虫害是全球主要的社会-生态挑战之一。虽然边境的二项式抽样检验可以降低病虫害传入的风险,但货物经常通不过检验,这对出口商和进口商都造成了资源浪费。将检验外包给出口国可以降低双方的检验成本。然而,这就需要评估境外检验的质量。本文提出了一种将路径上的既往检验数据、一次陆上检验样本与 Beta-二项式模型相结合的反演方法,以推断境外检验的样本量。我们在两个案例研究中说明了该方法:澳大利亚通过种质进口活体植物和新西兰进口丸化种子。在这些案例研究中,我们发现,在一次陆上检验中检测到四到五个受感染的单位通常足以对符合规定的境外检验的存在产生重大怀疑。我们还进行了一项模拟实验,以量化在实践中拒绝或接受符合规定的境外检验的统计能力:在高度感染的路径中,我们可以在对五个陆上批次进行检验后,检测到境外检验的缺失。感染程度较低的路径需要对 20 到 60 个批次进行陆上检验。我们的研究表明,陆上的二项式抽样可以用于评估境外检验的质量。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验