Davies Gareth, Weber Rikki, Wilson Kaya, Cummins Phil
Place, Space and Communities Division, Geoscience Australia, Canberra ACT 2601, Australia.
Geophys J Int. 2022 Apr 11;230(3):1630-1651. doi: 10.1093/gji/ggac140. eCollection 2022 Sep.
Offshore Probabilistic Tsunami Hazard Assessments (offshore PTHAs) provide large-scale analyses of earthquake-tsunami frequencies and uncertainties in the deep ocean, but do not provide high-resolution onshore tsunami hazard information as required for many risk-management applications. To understand the implications of an offshore PTHA for the onshore hazard at any site, in principle the tsunami inundation should be simulated locally for every earthquake scenario in the offshore PTHA. In practice this is rarely feasible due to the computational expense of inundation models, and the large number of scenarios in offshore PTHAs. Monte Carlo methods offer a practical and rigorous alternative for approximating the onshore hazard, using a random subset of scenarios. The resulting Monte Carlo errors can be quantified and controlled, enabling high-resolution onshore PTHAs to be implemented at a fraction of the computational cost. This study develops efficient Monte Carlo approaches for offshore-to-onshore PTHA. Modelled offshore PTHA wave heights are used to preferentially sample scenarios that have large offshore waves near an onshore site of interest. By appropriately weighting the scenarios, the Monte Carlo errors are reduced without introducing bias. The techniques are demonstrated in a high-resolution onshore PTHA for the island of Tongatapu in Tonga, using the 2018 Australian PTHA as the offshore PTHA, while considering only thrust earthquake sources on the Kermadec-Tonga trench. The efficiency improvements are equivalent to using 4-18 times more random scenarios, as compared with stratified-sampling by magnitude, which is commonly used for onshore PTHA. The greatest efficiency improvements are for rare, large tsunamis, and for calculations that represent epistemic uncertainties in the tsunami hazard. To facilitate the control of Monte Carlo errors in practical applications, this study also provides analytical techniques for estimating the errors both before and after inundation simulations are conducted. Before inundation simulation, this enables a proposed Monte Carlo sampling scheme to be checked, and potentially improved, at minimal computational cost. After inundation simulation, it enables the remaining Monte Carlo errors to be quantified at onshore sites, without additional inundation simulations. In combination these techniques enable offshore PTHAs to be rigorously transformed into onshore PTHAs, with quantification of epistemic uncertainties, while controlling Monte Carlo errors.
近海概率海啸危险性评估(offshore PTHAs)提供了对深海地震海啸频率和不确定性的大规模分析,但并未提供许多风险管理应用所需的高分辨率近岸海啸危险性信息。为了了解近海PTHA对任何地点近岸危险性的影响,原则上应针对近海PTHA中的每个地震场景在当地模拟海啸淹没情况。实际上,由于淹没模型的计算成本以及近海PTHA中的大量场景,这很少可行。蒙特卡罗方法提供了一种实用且严格的替代方法,用于使用场景的随机子集来近似近岸危险性。由此产生的蒙特卡罗误差可以被量化和控制,从而能够以计算成本的一小部分实现高分辨率的近岸PTHA。本研究开发了用于近海到近岸PTHA的高效蒙特卡罗方法。利用模拟的近海PTHA波高来优先对在感兴趣的近岸地点附近有大波高的场景进行采样。通过对场景进行适当加权,在不引入偏差的情况下减少了蒙特卡罗误差。这些技术在汤加汤加塔布岛的高分辨率近岸PTHA中得到了验证,使用2018年澳大利亚PTHA作为近海PTHA,同时仅考虑克马德克 - 汤加海沟上的逆冲地震源。与通常用于近岸PTHA的按震级分层抽样相比,效率提高相当于使用多4 - 18倍的随机场景。效率提高最大的是对于罕见的大海啸以及代表海啸危险性认知不确定性的计算。为了便于在实际应用中控制蒙特卡罗误差,本研究还提供了在进行淹没模拟之前和之后估计误差的分析技术。在淹没模拟之前,这使得能够以最小的计算成本检查并可能改进提议的蒙特卡罗采样方案。在淹没模拟之后,它能够在近岸地点量化剩余的蒙特卡罗误差,而无需额外的淹没模拟。这些技术相结合,能够在控制蒙特卡罗误差的同时,将近海PTHA严格转换为近岸PTHA,并对认知不确定性进行量化。