Suppr超能文献

非牛顿血液流变学影响特定患者模拟中的左心房停滞。

Non-Newtonian blood rheology impacts left atrial stasis in patient-specific simulations.

机构信息

Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California, USA.

Department of Mechanical Engineering, University of Washington, Seattle, Washington, USA.

出版信息

Int J Numer Method Biomed Eng. 2022 Jun;38(6):e3597. doi: 10.1002/cnm.3597. Epub 2022 Apr 7.

Abstract

The lack of mechanically effective contraction of the left atrium (LA) during atrial fibrillation (AF) disturbs blood flow, increasing the risk of thrombosis and ischemic stroke. Thrombosis is most likely in the left atrial appendage (LAA), a small narrow sac where blood is prone to stagnate. Slow flow promotes the formation of erythrocyte aggregates in the LAA, also known as rouleaux, causing viscosity gradients that are usually disregarded in patient-specific simulations. To evaluate these non-Newtonian effects, we built atrial models derived from 4D computed tomography scans of patients and carried out computational fluid dynamics simulations using the Carreau-Yasuda constitutive relation. We examined six patients, three of whom had AF and LAA thrombosis or a history of transient ischemic attacks (TIAs). We modeled the effects of hematocrit and rouleaux formation kinetics by varying the parameterization of the Carreau-Yasuda relation and modulating non-Newtonian viscosity changes based on residence time. Comparing non-Newtonian and Newtonian simulations indicates that slow flow in the LAA increases blood viscosity, altering secondary swirling flows and intensifying blood stasis. While some of these effects are subtle when examined using instantaneous metrics like shear rate or kinetic energy, they are manifested in the blood residence time, which accumulates over multiple heartbeats. Our data also reveal that LAA blood stasis worsens when hematocrit increases, offering a potential new mechanism for the clinically reported correlation between hematocrit and stroke incidence. In summary, we submit that hematocrit-dependent non-Newtonian blood rheology should be considered when calculating patient-specific blood stasis indices by computational fluid dynamics.

摘要

左心房(LA)在心房颤动(AF)期间缺乏机械有效的收缩,扰乱了血流,增加了血栓形成和缺血性中风的风险。血栓最有可能发生在左心耳(LAA),这是一个血液容易停滞的小而狭窄的囊袋。缓慢的血流促进了 LAA 中红细胞聚集的形成,也称为红细胞缗钱状,导致粘度梯度,这些梯度在患者特定的模拟中通常被忽略。为了评估这些非牛顿效应,我们构建了源自患者 4D 计算机断层扫描的心房模型,并使用 Carreau-Yasuda 本构关系进行了计算流体动力学模拟。我们检查了六名患者,其中三名患有 AF 和 LAA 血栓形成或短暂性脑缺血发作(TIA)病史。我们通过改变 Carreau-Yasuda 关系的参数化并根据停留时间调节非牛顿粘度变化来模拟血细胞比容和红细胞缗钱状形成动力学的影响。比较非牛顿和牛顿模拟表明,LAA 中的缓慢血流会增加血液粘度,改变二次旋流并加剧血液停滞。虽然使用剪切率或动能等瞬时指标检查时,这些影响有些微妙,但它们在血液停留时间上表现出来,该停留时间在多个心跳中积累。我们的数据还表明,当血细胞比容增加时,LAA 中的血液停滞会恶化,为临床上报告的血细胞比容与中风发生率之间的相关性提供了一个潜在的新机制。总之,我们认为,在通过计算流体动力学计算患者特定的血液停滞指数时,应考虑依赖血细胞比容的非牛顿血液流变学。

相似文献

1
Non-Newtonian blood rheology impacts left atrial stasis in patient-specific simulations.
Int J Numer Method Biomed Eng. 2022 Jun;38(6):e3597. doi: 10.1002/cnm.3597. Epub 2022 Apr 7.
2
Pulmonary vein flow split effects in patient-specific simulations of left atrial flow.
Comput Biol Med. 2023 Sep;163:107128. doi: 10.1016/j.compbiomed.2023.107128. Epub 2023 Jun 12.
3
Numerical prediction of thrombosis risk in left atrium under atrial fibrillation.
Math Biosci Eng. 2020 Feb 10;17(3):2348-2360. doi: 10.3934/mbe.2020125.
4
Left atrial appendage shape impacts on the left atrial flow hemodynamics: A numerical hypothesis generating study on two cases.
Comput Methods Programs Biomed. 2022 Jan;213:106506. doi: 10.1016/j.cmpb.2021.106506. Epub 2021 Oct 30.
5
Demonstration of Patient-Specific Simulations to Assess Left Atrial Appendage Thrombogenesis Risk.
Front Physiol. 2021 Feb 26;12:596596. doi: 10.3389/fphys.2021.596596. eCollection 2021.
6
Left Atrial and Left Atrial Appendage 4D Blood Flow Dynamics in Atrial Fibrillation.
Circ Cardiovasc Imaging. 2016 Sep;9(9):e004984. doi: 10.1161/CIRCIMAGING.116.004984.
9
Image-Based Flow Simulations of Pre- and Post-left Atrial Appendage Closure in the Left Atrium.
Cardiovasc Eng Technol. 2019 Jun;10(2):225-241. doi: 10.1007/s13239-019-00412-7. Epub 2019 Apr 5.

引用本文的文献

3
Super-resolution left ventricular flow and pressure mapping by Navier-Stokes-informed neural networks.
Comput Biol Med. 2025 Feb;185:109476. doi: 10.1016/j.compbiomed.2024.109476. Epub 2024 Dec 12.
5
Impact of occluder device configurations in in-silico left atrial hemodynamics for the analysis of device-related thrombus.
PLoS Comput Biol. 2024 Sep 26;20(9):e1011546. doi: 10.1371/journal.pcbi.1011546. eCollection 2024 Sep.
6
A reduced order model formulation for left atrium flow: an atrial fibrillation case.
Biomech Model Mechanobiol. 2024 Aug;23(4):1411-1429. doi: 10.1007/s10237-024-01847-1. Epub 2024 May 16.
8
Super-resolution Left Ventricular Flow and Pressure Mapping by Navier-Stokes-Informed Neural Networks.
bioRxiv. 2024 Apr 15:2024.04.12.589319. doi: 10.1101/2024.04.12.589319.
9
The role of the pulmonary veins on left atrial flow patterns and thrombus formation.
Sci Rep. 2024 Mar 11;14(1):5860. doi: 10.1038/s41598-024-56658-2.
10
Slow blood-flow in the left atrial appendage is associated with stroke in atrial fibrillation patients.
Heliyon. 2024 Feb 28;10(5):e26858. doi: 10.1016/j.heliyon.2024.e26858. eCollection 2024 Mar 15.

本文引用的文献

1
Subject-Specific Calculation of Left Atrial Appendage Blood-Borne Particle Residence Time Distribution in Atrial Fibrillation.
Front Physiol. 2021 May 11;12:633135. doi: 10.3389/fphys.2021.633135. eCollection 2021.
2
Demonstration of Patient-Specific Simulations to Assess Left Atrial Appendage Thrombogenesis Risk.
Front Physiol. 2021 Feb 26;12:596596. doi: 10.3389/fphys.2021.596596. eCollection 2021.
4
4D flow evaluation of blood non-Newtonian behavior in left ventricle flow analysis.
J Biomech. 2021 Apr 15;119:110308. doi: 10.1016/j.jbiomech.2021.110308. Epub 2021 Feb 8.
5
Boundary-Condition Analysis of an Idealized Left Atrium Model.
Ann Biomed Eng. 2021 Jun;49(6):1507-1520. doi: 10.1007/s10439-020-02702-x. Epub 2021 Jan 5.
6
Fibrosis, atrial fibrillation and stroke: clinical updates and emerging mechanistic models.
Heart. 2021 Jan;107(2):99-105. doi: 10.1136/heartjnl-2020-317455. Epub 2020 Oct 23.
7
Atrial fibrillation and the prothrombotic state: revisiting Virchow's triad in 2020.
Heart. 2020 Oct;106(19):1463-1468. doi: 10.1136/heartjnl-2020-316977. Epub 2020 Jul 16.
8
Numerical prediction of thrombosis risk in left atrium under atrial fibrillation.
Math Biosci Eng. 2020 Feb 10;17(3):2348-2360. doi: 10.3934/mbe.2020125.
9
Heart Disease and Stroke Statistics-2020 Update: A Report From the American Heart Association.
Circulation. 2020 Mar 3;141(9):e139-e596. doi: 10.1161/CIR.0000000000000757. Epub 2020 Jan 29.
10
Left Atrial Appendage Morphology Improves Prediction of Stagnant Flow and Stroke Risk in Atrial Fibrillation.
Circ Arrhythm Electrophysiol. 2020 Feb;13(2):e008074. doi: 10.1161/CIRCEP.119.008074. Epub 2020 Jan 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验