Suppr超能文献

用于研究光激发量子点与微生物外膜之间电荷转移的生物电子平台。

Bioelectronic Platform to Investigate Charge Transfer between Photoexcited Quantum Dots and Microbial Outer Membranes.

机构信息

Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States.

Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States.

出版信息

ACS Appl Mater Interfaces. 2022 Apr 6;14(13):15799-15810. doi: 10.1021/acsami.1c25032. Epub 2022 Mar 28.

Abstract

Photosynthetic semiconductor biohybrids (PSBs) convert light energy to chemical energy through photo-driven charge transfer from nanocrystals to microorganisms that perform bioreactions of interest. Initial proof-of-concept PSB studies with an emphasis on enhanced CO conversion have been encouraging; however, bringing the broad prospects of PSBs to fruition is contingent on establishing a firm fundamental understanding of underlying interfacial charge transfer processes. We introduce a bioelectronic platform that reduces the complexity of PSBs by focusing explicitly on interactions between colloidal quantum dots (QDs), microbial outer membranes, and native, small-molecule redox mediators. Our model platform employs a standard three-electrode electrochemical cell with supported outer membranes of , pyocyanin redox mediators, and semiconducting CdSe QDs dispersed in an aqueous electrolyte. We present a comprehensive electrochemical analysis of this platform via electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and chronoamperometry (CA). EIS reveals the formation and electronic properties of supported outer membrane films. CV reveals the electrochemically active surface area of outer membranes and that pyocyanin is the sole species that performs redox with these outer membranes under sweeping applied potential. CA demonstrates that photoexcited charge transfer in this system is driven by the reduction of pyocyanin at the QD surface followed by diffusion of reduced pyocyanin through the outer membrane. The broad applicability of this platform across many bacterial species, QD architectures, and controlled environmental conditions affords the possibility to define design principles for future PSB systems to synergistically integrate concurrent advances in genetically engineered organisms and inorganic nanomaterials.

摘要

光合半导体生物杂化(PSB)通过纳米晶体到进行感兴趣的生物反应的微生物的光驱动电荷转移将光能转化为化学能。最初强调增强 CO 转化的 PSB 概念验证研究令人鼓舞;然而,要实现 PSB 的广泛前景,取决于能否建立对底层界面电荷转移过程的牢固基本理解。我们引入了一种生物电子平台,通过明确关注胶体量子点(QD)、微生物外膜和天然小分子氧化还原介体之间的相互作用,降低 PSB 的复杂性。我们的模型平台采用带有支撑外膜的标准三电极电化学池,支撑外膜为 、菌绿素氧化还原介体和分散在水性电解质中的半导体 CdSe QD。我们通过电化学阻抗谱(EIS)、循环伏安法(CV)和计时安培法(CA)对该平台进行了全面的电化学分析。EIS 揭示了支撑外膜膜的形成和电子特性。CV 揭示了 外膜的电化学活性表面积,并且只有菌绿素是在外膜在扫动施加电势下进行氧化还原的唯一物种。CA 表明,该系统中的光激发电荷转移是由 QD 表面上的菌绿素还原驱动的,然后还原的菌绿素通过外膜扩散。该平台在许多细菌物种、QD 结构和受控环境条件下的广泛适用性为定义未来 PSB 系统的设计原则提供了可能性,以协同整合遗传工程生物和无机纳米材料的同步进展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验