Department of Cellular & Molecular Neuroscience, National Brain Research Centre, Manesar, Haryana, India.
Fluorescence Microscopy Division, Bruker India Scientific Pvt. Ltd., International Trade Tower, Nehru Place, New Delhi, India.
PLoS Genet. 2022 Mar 28;18(3):e1010127. doi: 10.1371/journal.pgen.1010127. eCollection 2022 Mar.
Neurons are vulnerable to physical insults, which compromise the integrity of both dendrites and axons. Although several molecular pathways of axon regeneration are identified, our knowledge of dendrite regeneration is limited. To understand the mechanisms of dendrite regeneration, we used the PVD neurons in C. elegans with stereotyped branched dendrites. Using femtosecond laser, we severed the primary dendrites and axon of this neuron. After severing the primary dendrites near the cell body, we observed sprouting of new branches from the proximal site within 6 hours, which regrew further with time in an unstereotyped manner. This was accompanied by reconnection between the proximal and distal dendrites, and fusion among the higher-order branches as reported before. We quantified the regeneration pattern into three aspects-territory length, number of branches, and fusion phenomena. Axonal injury causes a retraction of the severed end followed by a Dual leucine zipper kinase-1 (DLK-1) dependent regrowth from the severed end. We tested the roles of the major axon regeneration signalling hubs such as DLK-1-RPM-1, cAMP elevation, let-7 miRNA, AKT-1, Phosphatidylserine (PS) exposure/PS in dendrite regeneration. We found that neither dendrite regrowth nor fusion was affected by the axon injury pathway molecules. Surprisingly, we found that the RAC GTPase, CED-10 and its upstream GEF, TIAM-1 play a cell-autonomous role in dendrite regeneration. Additionally, the function of CED-10 in epidermal cell is critical for post-dendrotomy fusion phenomena. This work describes a novel regulatory mechanism of dendrite regeneration and provides a framework for understanding the cellular mechanism of dendrite regeneration using PVD neuron as a model system.
神经元容易受到物理损伤的影响,这会损害树突和轴突的完整性。虽然已经确定了几种轴突再生的分子途径,但我们对树突再生的了解有限。为了理解树突再生的机制,我们使用秀丽隐杆线虫中的 PVD 神经元,这些神经元具有定型的分支树突。我们使用飞秒激光切断该神经元的初级树突和轴突。在切断靠近细胞体的初级树突后,我们观察到新分支从近端部位在 6 小时内发芽,并以非定型方式随时间进一步生长。这伴随着近端和远端树突之间的重新连接,以及以前报道的更高阶分支之间的融合。我们将再生模式量化为三个方面——区域长度、分支数量和融合现象。轴突损伤会导致断端回缩,然后在断端处由 Dual leucine zipper kinase-1 (DLK-1) 依赖性生长。我们测试了主要轴突再生信号枢纽的作用,如 DLK-1-RPM-1、cAMP 升高、let-7 miRNA、AKT-1、磷脂酰丝氨酸(PS)暴露/PS 在树突再生中的作用。我们发现,无论是树突生长还是融合,都不受轴突损伤途径分子的影响。令人惊讶的是,我们发现 RAC GTPase、CED-10 及其上游 GEF TIAM-1 在树突再生中发挥细胞自主作用。此外,CED-10 在表皮细胞中的功能对于断树突后融合现象至关重要。这项工作描述了树突再生的新调控机制,并为使用 PVD 神经元作为模型系统理解树突再生的细胞机制提供了框架。