Suppr超能文献

气候变化趋势的检测和归因会是虚假回归吗?

Could detection and attribution of climate change trends be spurious regression?

作者信息

Cummins Donald P, Stephenson David B, Stott Peter A

机构信息

Department of Mathematics, University of Exeter, Exeter, UK.

Met Office Hadley Centre, Exeter, UK.

出版信息

Clim Dyn. 2022;59(9-10):2785-2799. doi: 10.1007/s00382-022-06242-z. Epub 2022 Mar 24.

Abstract

Since the 1970s, scientists have developed statistical methods intended to formalize detection of changes in global climate and to attribute such changes to relevant causal factors, natural and anthropogenic. Detection and attribution (D&A) of climate change trends is commonly performed using a variant of Hasselmann's "optimal fingerprinting" method, which involves a linear regression of historical climate observations on corresponding output from numerical climate models. However, it has long been known in the field of time series analysis that regressions of "non-stationary" or "trending" variables are, in general, statistically inconsistent and often spurious. When non-stationarity is caused by "integrated" processes, as is likely the case for climate variables, consistency of least-squares estimators depends on "cointegration" of regressors. This study has shown, using an idealized linear-response-model framework, that if standard assumptions hold then the optimal fingerprinting estimator is consistent, and hence robust against spurious regression. In the case of global mean surface temperature (GMST), parameterizing abstract linear response models in terms of energy balance provides this result with physical interpretability. Hypothesis tests conducted using observations of historical GMST and simulation output from 13 CMIP6 general circulation models produced no evidence that standard assumptions required for consistency were violated. It is therefore concluded that, at least in the case of GMST, detection and attribution of climate change trends is very likely not spurious regression. Furthermore, detection of significant cointegration between observations and model output indicates that the least-squares estimator is "superconsistent", with better convergence properties than might previously have been assumed. Finally, a new method has been developed for quantifying D&A uncertainty, exploiting the notion of cointegration to eliminate the need for pre-industrial control simulations.

摘要

自20世纪70年代以来,科学家们开发了统计方法,旨在将全球气候变化的检测形式化,并将这些变化归因于相关的因果因素,包括自然因素和人为因素。气候变化趋势的检测与归因(D&A)通常使用哈塞尔曼“最优指纹识别”方法的一种变体来进行,该方法涉及对历史气候观测数据与数值气候模型相应输出进行线性回归。然而,时间序列分析领域早就知道,对“非平稳”或“有趋势”变量的回归,一般来说在统计上是不一致的,而且往往是虚假的。当非平稳性是由“积分”过程引起时,气候变量很可能就是这种情况,最小二乘估计量的一致性取决于回归变量的“协整”。本研究使用理想化的线性响应模型框架表明,如果标准假设成立,那么最优指纹识别估计量是一致的,因此对虚假回归具有鲁棒性。就全球平均地表温度(GMST)而言,根据能量平衡对抽象线性响应模型进行参数化,可为这一结果提供物理解释。使用历史GMST观测数据和13个CMIP6通用环流模型的模拟输出进行的假设检验,没有发现一致性所需的标准假设被违反的证据。因此得出结论,至少就GMST而言,气候变化趋势的检测与归因很可能不是虚假回归。此外,观测数据与模型输出之间显著协整的检测表明,最小二乘估计量是“超一致的”,其收敛特性比之前假设的要好。最后,开发了一种新的方法来量化D&A不确定性,利用协整概念消除了对工业化前控制模拟的需求。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e44b/8943798/3772de2d5862/382_2022_6242_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验