Suppr超能文献

在绘画任务中使用可穿戴传感器来测量原发性震颤的严重程度。

Wearable sensors during drawing tasks to measure the severity of essential tremor.

机构信息

RMIT University, Melbourne, VIC, Australia.

SRM Institute of Science and Technology, Chennai, TN, India.

出版信息

Sci Rep. 2022 Mar 28;12(1):5242. doi: 10.1038/s41598-022-08922-6.

Abstract

Commonly used methods to assess the severity of essential tremor (ET) are based on clinical observation and lack objectivity. This study proposes the use of wearable accelerometer sensors for the quantitative assessment of ET. Acceleration data was recorded by inertial measurement unit (IMU) sensors during sketching of Archimedes spirals in 17 ET participants and 18 healthy controls. IMUs were placed at three points (dorsum of hand, posterior forearm, posterior upper arm) of each participant's dominant arm. Movement disorder neurologists who were blinded to clinical information scored ET patients on the Fahn-Tolosa-Marin rating scale (FTM) and conducted phenotyping according to the recent Consensus Statement on the Classification of Tremors. The ratio of power spectral density of acceleration data in 4-12 Hz to 0.5-4 Hz bands and the total duration of the action were inputs to a support vector machine that was trained to classify the ET subtype. Regression analysis was performed to determine the relationship of acceleration and temporal data with the FTM scores. The results show that the sensor located on the forearm had the best classification and regression results, with accuracy of 85.71% for binary classification of ET versus control. There was a moderate to good correlation (r = 0.561) between FTM and a combination of power spectral density ratio and task time. However, the system could not accurately differentiate ET phenotypes according to the Consensus classification scheme. Potential applications of machine-based assessment of ET using wearable sensors include clinical trials and remote monitoring of patients.

摘要

常用的评估原发性震颤(ET)严重程度的方法基于临床观察,缺乏客观性。本研究提出使用可穿戴加速计传感器对 ET 进行定量评估。在 17 名 ET 参与者和 18 名健康对照者进行阿基米德螺线绘图时,惯性测量单元(IMU)传感器记录了加速度数据。IMU 放置在每个参与者优势手臂的三个点(手部背侧、前臂后、上臂后)。对临床信息不知情的运动障碍神经科医生根据 Fahn-Tolosa-Marin 评分量表(FTM)对 ET 患者进行评分,并根据最近的震颤分类共识声明进行表型分析。加速度数据在 4-12 Hz 与 0.5-4 Hz 频段之间的功率谱密度比和动作的总持续时间是输入到支持向量机的输入,该支持向量机经过训练可对 ET 亚型进行分类。进行回归分析以确定加速度和时间数据与 FTM 评分的关系。结果表明,位于前臂的传感器具有最佳的分类和回归结果,对 ET 与对照的二分类的准确率为 85.71%。FTM 与功率谱密度比和任务时间的组合之间存在中度至良好的相关性(r=0.561)。然而,该系统无法根据共识分类方案准确地区分 ET 表型。使用可穿戴传感器进行基于机器的 ET 评估的潜在应用包括临床试验和患者远程监测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9ce/8960784/6f58a599b752/41598_2022_8922_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验