Suppr超能文献

一种用于手部震颤特征描述的新型可穿戴设备的研发。

Development of a New Wearable Device for the Characterization of Hand Tremor.

作者信息

Vescio Basilio, De Maria Marida, Crasà Marianna, Nisticò Rita, Calomino Camilla, Aracri Federica, Quattrone Aldo, Quattrone Andrea

机构信息

Biotecnomed S.C.aR.L., Viale Europa, 88100 Catanzaro, Italy.

Neuroscience Research Center, Department of Medical and Surgical Sciences, University "Magna Graecia", Viale Europa, 88100 Catanzaro, Italy.

出版信息

Bioengineering (Basel). 2023 Aug 30;10(9):1025. doi: 10.3390/bioengineering10091025.

Abstract

Rest tremor (RT) is observed in subjects with Parkinson's disease (PD) and Essential Tremor (ET). Electromyography (EMG) studies have shown that PD subjects exhibit alternating contractions of antagonistic muscles involved in tremors, while the contraction pattern of antagonistic muscles is synchronous in ET subjects. Therefore, the RT pattern can be used as a potential biomarker for differentiating PD from ET subjects. In this study, we developed a new wearable device and method for differentiating alternating from a synchronous RT pattern using inertial data. The novelty of our approach relies on the fact that the evaluation of synchronous or alternating tremor patterns using inertial sensors has never been described so far, and current approaches to evaluate the tremor patterns are based on surface EMG, which may be difficult to carry out for non-specialized operators. This new device, named "RT-Ring", is based on a six-axis inertial measurement unit and a Bluetooth Low-Energy microprocessor, and can be worn on a finger of the tremulous hand. A mobile app guides the operator through the whole acquisition process of inertial data from the hand with RT, and the prediction of tremor patterns is performed on a remote server through machine learning (ML) models. We used two decision tree-based algorithms, XGBoost and Random Forest, which were trained on features extracted from inertial data and achieved a classification accuracy of 92% and 89%, respectively, in differentiating alternating from synchronous tremor segments in the validation set. Finally, the classification response (alternating or synchronous RT pattern) is shown to the operator on the mobile app within a few seconds. This study is the first to demonstrate that different electromyographic tremor patterns have their counterparts in terms of rhythmic movement features, thus making inertial data suitable for predicting the muscular contraction pattern of tremors.

摘要

帕金森病(PD)和特发性震颤(ET)患者会出现静止性震颤(RT)。肌电图(EMG)研究表明,PD患者在震颤时拮抗肌会交替收缩,而ET患者拮抗肌的收缩模式是同步的。因此,RT模式可作为区分PD和ET患者的潜在生物标志物。在本研究中,我们开发了一种新的可穿戴设备和方法,用于利用惯性数据区分交替性与同步性RT模式。我们方法的新颖之处在于,迄今为止从未描述过使用惯性传感器评估同步或交替震颤模式,而目前评估震颤模式的方法基于表面肌电图,这对于非专业操作人员可能难以实施。这种名为“RT-Ring”的新设备基于六轴惯性测量单元和低功耗蓝牙微处理器,可佩戴在震颤手的手指上。一款移动应用程序指导操作人员完成手部惯性数据的整个采集过程,并且通过机器学习(ML)模型在远程服务器上进行震颤模式预测。我们使用了两种基于决策树的算法,即XGBoost和随机森林,它们在从惯性数据中提取的特征上进行训练,在验证集中区分交替性与同步性震颤段时,分类准确率分别达到了92%和89%。最后,分类结果(交替性或同步性RT模式)会在几秒钟内在移动应用程序上显示给操作人员。本研究首次证明,不同的肌电图震颤模式在节律性运动特征方面有其对应模式,从而使惯性数据适用于预测震颤的肌肉收缩模式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3482/10525186/f7b3dae36f20/bioengineering-10-01025-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验