Suppr超能文献

从电子病历中识别偶发性心房颤动。

Identification of Incident Atrial Fibrillation From Electronic Medical Records.

机构信息

Department of Quantitative Health Sciences Mayo Clinic Rochester MN.

Department of Cardiovascular Medicine Mayo Clinic Rochester MN.

出版信息

J Am Heart Assoc. 2022 Apr 5;11(7):e023237. doi: 10.1161/JAHA.121.023237. Epub 2022 Mar 29.

Abstract

Background Electronic medical records are increasingly used to identify disease cohorts; however, computable phenotypes using electronic medical record data are often unable to distinguish between prevalent and incident cases. Methods and Results We identified all Olmsted County, Minnesota residents aged ≥18 with a first-ever diagnostic code for atrial fibrillation or atrial flutter from 2000 to 2014 (N=6177), and a random sample with an code from 2016 to 2018 (N=200). Trained nurse abstractors reviewed all medical records to validate the events and ascertain the date of onset (incidence date). Various algorithms based on number and types of codes (inpatient/outpatient), medications, and procedures were evaluated. Positive predictive value (PPV) and sensitivity of the algorithms were calculated. The lowest PPV was observed for 1 code (64.4%), and the highest PPV was observed for 2 codes (any type) >7 days apart but within 1 year (71.6%). Requiring either 1 inpatient or 2 outpatient codes separated by >7 days but within 1 year had the best balance between PPV (69.9%) and sensitivity (95.5%). PPVs were slightly higher using codes. Requiring an anticoagulant or antiarrhythmic prescription or electrical cardioversion in addition to diagnostic code(s) modestly improved the PPVs at the expense of large reductions in sensitivity. Conclusions We developed simple, exportable, computable phenotypes for atrial fibrillation using structured electronic medical record data. However, use of diagnostic codes to identify incident atrial fibrillation is prone to some misclassification. Further study is warranted to determine whether more complex phenotypes, including unstructured data sources or using machine learning techniques, may improve the accuracy of identifying incident atrial fibrillation.

摘要

背景

电子病历越来越多地被用于识别疾病队列;然而,使用电子病历数据计算的可计算表型通常无法区分现患病例和新发病例。

方法和结果

我们从 2000 年至 2014 年确定了明尼苏达州奥姆斯特德县所有首次诊断为心房颤动或心房扑动的年龄≥18 岁的居民(N=6177),并从 2016 年至 2018 年确定了一个随机样本(N=200)。经过培训的护士摘要员审查了所有病历以验证事件并确定发病日期(发病日期)。评估了基于数量和类型的代码(住院/门诊)、药物和程序的各种算法。计算了算法的阳性预测值(PPV)和敏感性。观察到 1 个代码的最低 PPV(64.4%),观察到 2 个代码(任何类型)>相隔 7 天但在 1 年内相隔 7 天以上的最高 PPV(71.6%)。要求 1 个住院或 2 个门诊代码相隔> 7 天但在 1 年内,具有最佳的 PPV(69.9%)和敏感性(95.5%)之间的平衡。使用 代码时,PPV 略高。除诊断代码外,还需要抗凝或抗心律失常处方或电复律,可适度提高 PPV,但敏感性会大幅降低。

结论

我们使用结构化电子病历数据为心房颤动开发了简单、可导出、可计算的表型。然而,使用诊断代码来识别新发心房颤动容易出现一些分类错误。需要进一步研究以确定更复杂的表型,包括非结构化数据源或使用机器学习技术,是否可以提高识别新发心房颤动的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7135/9075468/8a30e2d21fca/JAH3-11-e023237-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验