Suppr超能文献

纳米硒通过招募根际有益微生物组并在 Cd 胁迫下分配信号分子水平来整合土壤-胡椒植物的内稳态。

Nanoselenium integrates soil-pepper plant homeostasis by recruiting rhizosphere-beneficial microbiomes and allocating signaling molecule levels under Cd stress.

机构信息

Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.

Hunan Agricultural Biotechnology Research Institute, China.

出版信息

J Hazard Mater. 2022 Jun 15;432:128763. doi: 10.1016/j.jhazmat.2022.128763. Epub 2022 Mar 23.

Abstract

Most studies have focused on regulation in a metabolic pathway in response to exogenous selenium under cadmium stress, rather than the change of key factors in soil and pepper plants. In this study, the correlations in environmental variables, microorganisms, metabolic pathways, Se and Cd morphology under nano-Se intervention were examined using metabolomics and microbial diversity in rhizosphere soil and pepper plants. The principal forms of Se in the soils were Se (VI) and SeCys, while SeMet and MeSeCys were the main components in the root, stem, leaves, and fruits in the treatment of nano-Se (5 and 20 mg/L) relative to the control. Soil enzymes,metabolites (fluorescein diacetate, urease, brassinolide, and p-hydroxybenzonic acid), and plant metabolites (rutin, luteolin, brassinolide, and abscisic acid) were remarkably enhanced by nano-Se fortification. The bio-enhancement of nano-Se can boost the beneficial microorganisms of Gammaproteobacteria, Alphaproteobacteria, Bacteroidia, Gemmatimonadetes, Deltaproteobacteria, and Anaerolineae in rhizosphere soil. Changes in microbial community were found to be strongly linked to the environment index, enzymes, soil metabolites, Se forms, which reduced Cd bioavailability and Cd accumulation in pepper plants. In conclusion, the nano-Se application integrates soil-plant balance by improving soil qualities and assigning signaling molecule levels in rhizosphere soil and pepper plants.

摘要

大多数研究都集中在外源硒在镉胁迫下对代谢途径的调节,而不是土壤和辣椒植株中关键因素的变化。本研究采用代谢组学和微生物多样性分析方法,研究了纳米硒干预下环境变量、微生物、代谢途径、硒和镉形态的相关性。结果表明,土壤中硒的主要形态为硒(VI)和硒半胱氨酸,而根、茎、叶和果实中硒的主要形态为硒代蛋氨酸和甲硒半胱氨酸。与对照相比,纳米硒(5 和 20 mg/L)处理显著提高了土壤酶、代谢物(荧光素二乙酸、脲酶、油菜素内酯和对羟基苯甲酸)和植物代谢物(芦丁、木犀草素、油菜素内酯和脱落酸)。纳米硒的生物强化可以促进根际土壤中γ变形菌纲、α变形菌纲、拟杆菌门、芽单胞菌门、δ变形菌纲和厌氧绳菌的有益微生物。发现微生物群落的变化与环境指数、土壤酶、土壤代谢物、硒形态密切相关,这些变化降低了辣椒植株中镉的生物有效性和积累。总之,纳米硒的应用通过改善根际土壤和辣椒植株中的土壤质量和信号分子水平,实现了土壤-植物平衡。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验