Suppr超能文献

基于缺失协变量的区间删失数据的比例风险模型的新估计方法。

A new approach to estimation of the proportional hazards model based on interval-censored data with missing covariates.

机构信息

Department of Statistics, University of Missouri, Columbia, MO, 65211, USA.

Department of Statistics, Yunnan University, Kunming, 650091, China.

出版信息

Lifetime Data Anal. 2022 Jul;28(3):335-355. doi: 10.1007/s10985-022-09550-y. Epub 2022 Mar 29.

Abstract

This paper discusses the fitting of the proportional hazards model to interval-censored failure time data with missing covariates. Many authors have discussed the problem when complete covariate information is available or the missing is completely at random. In contrast to this, we will focus on the situation where the missing is at random. For the problem, a sieve maximum likelihood estimation approach is proposed with the use of I-spline functions to approximate the unknown cumulative baseline hazard function in the model. For the implementation of the proposed method, we develop an EM algorithm based on a two-stage data augmentation. Furthermore, we show that the proposed estimators of regression parameters are consistent and asymptotically normal. The proposed approach is then applied to a set of the data concerning Alzheimer Disease that motivated this study.

摘要

本文讨论了带有缺失协变量的区间删失失效时间数据的比例风险模型拟合。许多作者已经讨论了在完整协变量信息可用或缺失完全随机的情况下的问题。与此相反,我们将重点讨论缺失随机的情况。对于该问题,提出了一种使用 I-样条函数逼近模型中未知累积基线风险函数的筛最大似然估计方法。为了实现所提出的方法,我们基于两阶段数据扩充开发了一种 EM 算法。此外,我们证明了回归参数的估计量是一致的和渐近正态的。然后,将所提出的方法应用于一组关于阿尔茨海默病的激励本研究的数据。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验