Suppr超能文献

[核磁共振心脏成像。II. 光谱学]

[Cardiac imaging by nuclear magnetic resonance. II. Spectroscopy].

作者信息

Lanzer P A

出版信息

Z Kardiol. 1986 Aug;75(8):449-62.

PMID:3535275
Abstract

Nuclear magnetic resonance (NMR) spectroscopy is a new technique to study myocardial metabolism in living tissues by noninvasive means. The biochemical studies on intact hearts are performed in multinuclear NMR spectrometers using Fourier transform techniques for data acquisition. The biological NMR experiments preserve the tissues and can be repeated with a temporal resolution of seconds to several minutes in a reproducible fashion. As a marker of the intermediary metabolism P-31, C-13, H-1, F-19, N-14, Na-23, and K-39 isotopes are commonly used. NMR spectrum analysis permits the identification of several important substrates of the myocardial metabolism and their concentrational changes. In addition, the biophysical parameters of magnetic relaxation properties are measured. In some instances enzyme kinetics can be assessed. The disadvantage of NMR spectroscopy is the low sensitivity: only substrates with a intracellular concentration of greater than or equal to 0.5 mM can be detected. Improvements in sensitivity can be achieved, if the number of scans per spectrum and magnetic field strength are increased. The application of NMR spectroscopy in cardiovascular medicine is new and systematic studies on myocardial metabolism in vivo are not yet available. However, using P-31 MR spectroscopy several important results concerning the changes of the high energy phosphates and the intracellular pH changes during myocardial ischemia, as well as interesting insights into the regulatory principles of the cellular respiration were obtained. Similarly, C-13 NMR spectroscopy successfully described some aspects of glycogen metabolism and the kinetics of citric acid cycle in the myocardium. The clinical application of NMR spectroscopy appears feasible in a near future. The practical importance of this promising technique in clinical cardiology will depend on availability of the whole-body MR spectrometers, on the development of pertinent techniques for spatial MR signal resolution, and on our ability to uncover and to understand the biochemical principles of cardiac diseases. However, it is already today evident that MR spectroscopy successfully shifted the research interests towards biochemical processes at the cellular level as important causes and markers of cardiac diseases and extended our knowledge of the pathophysiology of the myocardium.

摘要

核磁共振(NMR)波谱学是一种通过非侵入性手段研究活体组织心肌代谢的新技术。对完整心脏的生化研究是在多核磁共振波谱仪中使用傅里叶变换技术进行数据采集。生物核磁共振实验可保存组织,并能以秒至几分钟的时间分辨率以可重复的方式重复进行。作为中间代谢的标志物,常用P - 31、C - 13、H - 1、F - 19、N - 14、Na - 23和K - 39同位素。核磁共振波谱分析可识别心肌代谢的几种重要底物及其浓度变化。此外,还可测量磁弛豫特性的生物物理参数。在某些情况下,可评估酶动力学。核磁共振波谱学的缺点是灵敏度低:只能检测细胞内浓度大于或等于0.5 mM的底物。如果增加每个波谱的扫描次数和磁场强度,可提高灵敏度。核磁共振波谱学在心血管医学中的应用尚新,目前尚无关于体内心肌代谢的系统研究。然而,使用P - 31磁共振波谱学获得了一些关于心肌缺血期间高能磷酸盐变化和细胞内pH变化的重要结果,以及对细胞呼吸调节原理的有趣见解。同样,C - 13核磁共振波谱学成功描述了心肌糖原代谢的某些方面和柠檬酸循环的动力学。核磁共振波谱学的临床应用在不久的将来似乎是可行的。这项有前景的技术在临床心脏病学中的实际重要性将取决于全身磁共振波谱仪的可用性、空间磁共振信号分辨率相关技术的发展,以及我们揭示和理解心脏病生化原理的能力。然而,如今已经很明显,磁共振波谱学成功地将研究兴趣转向了细胞水平的生化过程,这些过程是心脏病的重要病因和标志物,并扩展了我们对心肌病理生理学的认识。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验