School of Biotechnology, Institute of Science, Banaras Hindu Universitygrid.411507.6, Varanasi, Uttar Pradesh, India.
J Bacteriol. 2022 Apr 19;204(4):e0001022. doi: 10.1128/jb.00010-22. Epub 2022 Mar 30.
Bacterial resistance to β-lactam antibiotics is often mediated by β-lactamases and lytic transglycosylases. Azospirillum baldaniorum Sp245 is a plant-growth-promoting rhizobacterium that shows high levels of resistance to ampicillin. Investigating the molecular basis of ampicillin resistance and its regulation in A. baldaniorum Sp245, we found that a gene encoding lytic transglycosylase (Ltg1) is organized divergently from a gene encoding an extracytoplasmic function (ECF) σ factor (RpoE7) in its genome. Inactivation of in Sp245 led to increased ability to form cell-cell aggregates and produce exopolysaccharides and biofilm, suggesting that might contribute to antibiotic resistance. Inactivation of in Sp245, however, adversely affected its growth, indicating a requirement of Ltg1 for optimal growth. The expression of , as well that of as , was positively regulated by RpoE7, and overexpression of RpoE7 conferred ampicillin sensitivity to both the :: mutant and its parent. In addition, RpoE7 negatively regulated the expression of a gene encoding a β-lactamase (). Out of the 5 paralogs of RpoH encoded in the genome of Sp245, RpoH3 played major roles in conferring ampicillin sensitivity and in the downregulation of . The expression of was positively regulated by RpoE7. Collectively, these observations reveal a novel regulatory cascade of RpoE7-RpoH3 σ factors that negatively regulates ampicillin resistance in Sp245 by controlling the expression of a β-lactamase and a lytic transglycosylase. In the absence of a cognate anti-sigma factor, addressing how the activity of RpoE7 is regulated by β-lactams will unravel new mechanisms of regulation of β-lactam resistance in bacteria. Antimicrobial resistance is a global health problem that requires a better understanding of the mechanisms that bacteria use to resist antibiotics. Bacteria inhabiting the plant rhizosphere are a potential source of antibiotic resistance, but their mechanisms controlling antibiotic resistance are poorly understood. Sp245 is a rhizobacterium that is known for its characteristic resistance to ampicillin. Here, we show that an AmpC-type β-lactamase and a lytic transglycosylase mediate resistance to ampicillin in Sp245. While the gene encoding lytic transglycosylase is positively regulated by an ECF σ-factor (RpoE7), a cascade of RpoE7 and RpoH3 σ factors negatively regulates the expression of β-lactamase. This is the first evidence showing involvement of a regulatory cascade of σ factors in the regulation of ampicillin resistance in a rhizobacterium.
β-内酰胺抗生素的细菌耐药性通常由β-内酰胺酶和溶葡聚糖酶介导。鲍氏不动杆菌 Sp245 是一种植物促生根际细菌,对氨苄青霉素表现出高水平的耐药性。为了研究 A. baldaniorum Sp245 中氨苄青霉素耐药性的分子基础及其调控机制,我们发现一个编码溶葡聚糖酶(Ltg1)的基因与一个编码细胞外功能(ECF)σ因子(RpoE7)的基因在其基因组中呈反式排列。在 Sp245 中失活 导致细胞-细胞聚集能力增强,并产生更多的胞外多糖和生物膜,表明 可能有助于抗生素耐药性。然而,在 Sp245 中失活 会对其生长产生不利影响,表明 Ltg1 对最佳生长是必需的。 的表达以及 的表达均受 RpoE7 的正向调控,RpoE7 的过表达使 :: 突变体及其亲本对氨苄青霉素敏感。此外,RpoE7 负调控编码β-内酰胺酶()的基因的表达。鲍氏不动杆菌 Sp245 基因组中编码的 5 个 RpoH 同源物中,RpoH3 主要通过控制 β-内酰胺酶和溶葡聚糖酶的表达来赋予氨苄青霉素敏感性和下调 的表达。 的表达受 RpoE7 的正向调控。总的来说,这些观察结果揭示了一个新的 RpoE7-RpoH3 σ 因子调控级联,通过控制β-内酰胺酶和溶葡聚糖酶的表达来负调控鲍氏不动杆菌 Sp245 对氨苄青霉素的耐药性。在没有同源抗σ因子的情况下,阐明 RpoE7 的活性如何被β-内酰胺类药物调控,将揭示细菌β-内酰胺类耐药性调控的新机制。 抗生素耐药性是一个全球性的健康问题,需要更好地了解细菌用于抵抗抗生素的机制。栖息在植物根际的细菌是抗生素耐药性的潜在来源,但它们控制抗生素耐药性的机制尚不清楚。 Sp245 是一种已知具有氨苄青霉素特征耐药性的根际细菌。在这里,我们表明 AmpC 型β-内酰胺酶和溶葡聚糖酶介导 Sp245 对氨苄青霉素的耐药性。虽然编码溶葡聚糖酶的基因受 ECF σ 因子(RpoE7)的正向调控,但 RpoE7 和 RpoH3 σ 因子的级联反应负调控β-内酰胺酶的表达。这是第一个证据表明,在根际细菌中,σ 因子的调控级联参与了氨苄青霉素耐药性的调控。