Suppr超能文献

多场景异常检测(ODDS)数据库:用于研究异常检测的经过验证的真实场景。

The Oddity Detection in Diverse Scenes (ODDS) database: Validated real-world scenes for studying anomaly detection.

机构信息

Department of Psychology, New Mexico State University, P.O. Box 30001 / MSC 3452, Las Cruces, NM, 88003, USA.

National Science Foundation, Alexandria, VA, USA.

出版信息

Behav Res Methods. 2023 Feb;55(2):583-599. doi: 10.3758/s13428-022-01816-5. Epub 2022 Mar 30.

Abstract

Many applied screening tasks (e.g., medical image or baggage screening) involve challenging searches for which standard laboratory search is rarely equivalent. For example, whereas laboratory search frequently requires observers to look for precisely defined targets among isolated, non-overlapping images randomly arrayed on clean backgrounds, medical images present unspecified targets in noisy, yet spatially regular scenes. Those unspecified targets are typically oddities, elements that do not belong. To develop a closer laboratory analogue to this, we created a database of scenes containing subtle, ill-specified "oddity" targets. These scenes have similar perceptual densities and spatial regularities to those found in expert search tasks, and each includes 16 variants of the unedited scene wherein an oddity (a subtle deformation of the scene) is hidden. In Experiment 1, eight volunteers searched thousands of scene variants for an oddity. Regardless of their search accuracy, they were then shown the highlighted anomaly and rated its subtlety. Subtlety ratings reliably predicted search performance (accuracy and response times) and did so better than image statistics. In Experiment 2, we conducted a conceptual replication in which a larger group of naïve searchers scanned subsets of the scene variants. Prior subtlety ratings reliably predicted search outcomes. Whereas medical image targets are difficult for naïve searchers to detect, our database contains thousands of interior and exterior scenes that vary in difficulty, but are nevertheless searchable by novices. In this way, the stimuli will be useful for studying visual search as it typically occurs in expert domains: Ill-specified search for anomalies in noisy displays.

摘要

许多应用的筛选任务(例如医学影像或行李检查)涉及具有挑战性的搜索,而标准的实验室搜索很少能够与之等效。例如,实验室搜索通常要求观察者在干净背景上随机排列的孤立、不重叠的图像中寻找精确定义的目标,而医学图像则在嘈杂但空间规则的场景中呈现未指定的目标。这些未指定的目标通常是异常值,即不属于场景的元素。为了在实验室中更紧密地模拟这一点,我们创建了一个包含微妙、未精确定义的“异常”目标的场景数据库。这些场景具有与专家搜索任务中相似的感知密度和空间规则,并且每个场景都包含 16 个未编辑场景的变体,其中隐藏了一个异常值(场景的微妙变形)。在实验 1 中,八名志愿者在数千个场景变体中搜索异常值。无论他们的搜索准确性如何,他们都会看到突出显示的异常值,并对其微妙程度进行评分。微妙程度评分可靠地预测了搜索表现(准确性和反应时间),并且比图像统计数据更好。在实验 2 中,我们进行了一个概念上的复制,其中一组更大的新手搜索者扫描了场景变体的子集。先前的微妙程度评分可靠地预测了搜索结果。尽管医学图像目标对新手搜索者来说难以察觉,但我们的数据库包含了数千个内部和外部场景,它们在难度上有所不同,但仍然可以被新手搜索者搜索。通过这种方式,这些刺激物将有助于研究视觉搜索,因为它通常发生在专家领域:在嘈杂的显示中搜索不明确的异常值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c520/8966608/e8353ad76a11/13428_2022_1816_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验