Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
Department of Neurobiology, University of Utah, Salt Lake City, UT 84112-9458, USA.
Cell Rep. 2022 Mar 29;38(13):110577. doi: 10.1016/j.celrep.2022.110577.
Synaptic plasticity depends on rapid experience-dependent changes in the number of neurotransmitter receptors. Previously, we demonstrated that motor-mediated transport of AMPA receptors (AMPARs) to and from synapses is a critical determinant of synaptic strength. Here, we describe two convergent signaling pathways that coordinate the loading of synaptic AMPARs onto scaffolds, and scaffolds onto motors, thus providing a mechanism for experience-dependent changes in synaptic strength. We find that an evolutionarily conserved JIP-protein scaffold complex and two classes of mitogen-activated protein kinase (MAPK) proteins mediate AMPAR transport by kinesin-1 motors. Genetic analysis combined with in vivo, real-time imaging in Caenorhabditis elegans revealed that CaMKII is required for loading AMPARs onto the scaffold, and MAPK signaling is required for loading the scaffold complex onto motors. Our data support a model where CaMKII signaling and a MAPK-signaling pathway cooperate to facilitate the rapid exchange of AMPARs required for early stages of synaptic plasticity.
突触可塑性取决于神经递质受体数量的快速、经验依赖性变化。此前,我们证明了 AMPA 受体(AMPARs)在突触间的运动介导转运是突触强度的关键决定因素。在这里,我们描述了两种趋同信号通路,它们协调了 AMPAR 与支架的加载以及支架与马达的加载,从而为突触强度的经验依赖性变化提供了一种机制。我们发现,进化保守的 JIP 蛋白支架复合物和两类丝裂原活化蛋白激酶(MAPK)蛋白通过驱动蛋白-1 马达介导 AMPAR 转运。遗传分析结合线虫体内实时成像揭示了 CaMKII 对于 AMPAR 加载到支架上是必需的,而 MAPK 信号对于支架复合物加载到马达上也是必需的。我们的数据支持这样一种模型,即 CaMKII 信号和 MAPK 信号通路合作,促进突触可塑性早期阶段所需的 AMPAR 的快速交换。