Suppr超能文献

含有软骨来源细胞外基质微纤维的生物墨水能够在生物打印构建物中对血管毛细血管形成进行空间控制。

Bioink with cartilage-derived extracellular matrix microfibers enables spatial control of vascular capillary formation in bioprinted constructs.

作者信息

Terpstra Margo L, Li Jinyu, Mensinga Anneloes, de Ruijter Mylène, van Rijen Mattie H P, Androulidakis Charalampos, Galiotis Costas, Papantoniou Ioannis, Matsusaki Michiya, Malda Jos, Levato Riccardo

机构信息

Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands.

Division of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan.

出版信息

Biofabrication. 2022 Apr 20;14(3). doi: 10.1088/1758-5090/ac6282.

Abstract

Microvasculature is essential for the exchange of gas and nutrient for most tissues in our body. Some tissue structures such as the meniscus presents spatially confined blood vessels adjacent to non-vascularized regions. In biofabrication, mimicking the spatial distribution of such vascular components is paramount, as capillary ingrowth into non-vascularized tissues can lead to tissue matrix alterations and subsequent pathology. Multi-material three-dimensional (3D) bioprinting strategies have the potential to resolve anisotropic tissue features, although building complex constructs comprising stable vascularized and non-vascularized regions remains a major challenge to date. In this study, we developed endothelial cell-laden pro- and anti-angiogenic bioinks, supplemented with bioactive matrix-derived microfibers (MFs) that were created from type I collagen sponges (col-1) and cartilage decellularized extracellular matrix (CdECM), respectively. Human umbilical vein endothelial cell (HUVEC)-driven capillary networks started to form 2 d after bioprinting. Supplementing cartilage-derived MFs to endothelial-cell laden bioinks reduced the total length of neo-microvessels by 29%, and the number of microvessel junctions by 37% after 14 d, compared to bioinks with pro-angiogenic col-1 MFs. As a proof of concept, the bioinks were bioprinted into an anatomical meniscus shape with a biomimetic vascularized outer and non-vascularized inner region, using a gellan gum microgel suspension bath. These 3D meniscus-like constructs were cultured up to 14 d, with in the outer zone the HUVEC-, mural cell-, and col-1 MF-laden pro-angiogenic bioink, and in the inner zone a meniscus progenitor cell (MPC)- and CdECM MF-laden anti-angiogenic bioink, revealing successful spatial confinement of the nascent vascular network only in the outer zone. Further, to co-facilitate both microvessel formation and MPC-derived matrix formation, we formulated cell culture medium conditions with a temporal switch. Overall, this study provides a new strategy that could be applied to develop zonal biomimetic meniscal constructs. Moreover, the use of ECM-derived MFs to promote or inhibit capillary networks opens new possibilities for the biofabrication of tissues with anisotropic microvascular distribution. These have potential for many applications includingmodels of vascular-to-avascular tissue interfaces, cancer progression, and for testing anti-angiogenic therapies.

摘要

微血管系统对于人体大多数组织的气体和营养物质交换至关重要。一些组织结构,如半月板,在空间上存在与无血管区域相邻的受限血管。在生物制造中,模拟此类血管成分的空间分布至关重要,因为毛细血管长入无血管组织会导致组织基质改变及后续病理变化。多材料三维(3D)生物打印策略有潜力解决各向异性组织特征问题,尽管构建包含稳定血管化和无血管化区域的复杂结构至今仍是一项重大挑战。在本研究中,我们开发了负载内皮细胞的促血管生成和抗血管生成生物墨水,并分别添加了由I型胶原海绵(col-1)和软骨脱细胞细胞外基质(CdECM)制成的生物活性基质衍生微纤维(MFs)。生物打印后2天,人脐静脉内皮细胞(HUVEC)驱动的毛细血管网络开始形成。与含有促血管生成col-1微纤维的生物墨水相比,向负载内皮细胞的生物墨水中添加软骨衍生微纤维后,14天后新生微血管的总长度减少了29%,微血管连接处的数量减少了37%。作为概念验证,使用结冷胶微凝胶悬浮浴将生物墨水打印成具有仿生血管化外层和无血管化内层区域的解剖学半月板形状。这些3D半月板样构建体培养长达14天,外层区域使用负载HUVEC、壁细胞和col-1微纤维的促血管生成生物墨水,内层区域使用负载半月板祖细胞(MPC)和CdECM微纤维的抗血管生成生物墨水,结果显示新生血管网络仅在外层区域成功实现了空间限制。此外,为了共同促进微血管形成和MPC衍生的基质形成,我们制定了具有时间切换功能的细胞培养基条件。总体而言,本研究提供了一种可应用于开发区域仿生半月板构建体的新策略。此外,利用ECM衍生的微纤维促进或抑制毛细血管网络为具有各向异性微血管分布的组织生物制造开辟了新的可能性。这些在许多应用中具有潜力,包括血管到无血管组织界面模型、癌症进展以及抗血管生成疗法测试。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验