Suppr超能文献

基于类别引导注意力的磁共振成像脑肿瘤分割网络。

Category guided attention network for brain tumor segmentation in MRI.

机构信息

School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing 100083, People's Republic of China.

Center for Research in Computer Vision, University of Central Florida, Orlando, United States of America.

出版信息

Phys Med Biol. 2022 Apr 11;67(8). doi: 10.1088/1361-6560/ac628a.

Abstract

. Magnetic resonance imaging (MRI) has been widely used for the analysis and diagnosis of brain diseases. Accurate and automatic brain tumor segmentation is of paramount importance for radiation treatment. However, low tissue contrast in tumor regions makes it a challenging task.. We propose a novel segmentation network named Category Guided Attention U-Net (CGA U-Net). In this model, we design a Supervised Attention Module (SAM) based on the attention mechanism, which can capture more accurate and stable long-range dependency in feature maps without introducing much computational cost. Moreover, we propose an intra-class update approach to reconstruct feature maps by aggregating pixels of the same category.. Experimental results on the BraTS 2019 datasets show that the proposed method outperformers the state-of-the-art algorithms in both segmentation performance and computational complexity.. The CGA U-Net can effectively capture the global semantic information in the MRI image by using the SAM module, while significantly reducing the computational cost. Code is available athttps://github.com/delugewalker/CGA-U-Net.

摘要

磁共振成像(MRI)已广泛应用于脑部疾病的分析和诊断。准确、自动的脑肿瘤分割对于放射治疗至关重要。然而,肿瘤区域的组织对比度低使得这一任务极具挑战性。我们提出了一种名为类别引导注意力 U-Net(CGA U-Net)的新型分割网络。在这个模型中,我们设计了一种基于注意力机制的监督注意力模块(SAM),可以在不引入过多计算成本的情况下,更准确、更稳定地捕获特征图中的长距离依赖关系。此外,我们提出了一种类内更新方法,通过聚合同一类别的像素来重建特征图。在 BraTS 2019 数据集上的实验结果表明,所提出的方法在分割性能和计算复杂度方面均优于最先进的算法。CGA U-Net 可以通过使用 SAM 模块有效地捕获 MRI 图像中的全局语义信息,同时显著降低计算成本。代码可在 https://github.com/delugewalker/CGA-U-Net 上获取。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验