Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, United States of America.
Phys Med Biol. 2022 Apr 11;67(8). doi: 10.1088/1361-6560/ac5ed8.
Accurate segmentation of glioma and its subregions plays an important role in radiotherapy treatment planning. Due to a very populated multiparameter magnetic resonance imaging image, manual segmentation tasks can be very time-consuming, meticulous, and prone to subjective errors. Here, we propose a novel deep learning framework based on mutual enhancing networks to automatically segment brain tumor subregions. The proposed framework is suitable for the segmentation of brain tumor subregions owing to the contribution of Retina U-Net followed by the implementation of a mutual enhancing strategy between the classification localization map (CLM) module and segmentation module. Retina U-Net is trained to accurately identify view-of-interest and feature maps of the whole tumor (WT), which are then transferred to the CLM module and segmentation module. Subsequently, CLM generated by the CLM module is integrated with the segmentation module to bring forth a mutual enhancing strategy. In this way, our proposed framework first focuses on WT through Retina U-Net, and since WT consists of subregions, a mutual enhancing strategy then further aims to classify and segment subregions embedded within WT. We implemented and evaluated our proposed framework on the BraTS 2020 dataset consisting of 369 cases. We performed a 5-fold cross-validation on 200 datasets and a hold-out test on the remaining 169 cases. To demonstrate the effectiveness of our network design, we compared our method against the networks without Retina U-Net, mutual enhancing strategy, and a recently published Cascaded U-Net architecture. Results of all four methods were compared to the ground truth for segmentation and localization accuracies. Our method yielded significantly ( < 0.01) better values of dice-similarity-coefficient, center-of-mass-distance, and volume difference compared to all three competing methods across all tumor labels (necrosis and non-enhancing, edema, enhancing tumor, WT, tumor core) on both validation and hold-out dataset. Overall quantitative and statistical results of this work demonstrate the ability of our method to both accurately and automatically segment brain tumor subregions.
准确分割脑肿瘤及其亚区在放射治疗计划中起着重要作用。由于磁共振成像图像具有非常丰富的多参数,因此手动分割任务可能非常耗时、细致且容易出现主观错误。在这里,我们提出了一种基于相互增强网络的新的深度学习框架,用于自动分割脑肿瘤亚区。由于引入了视网膜 U-Net,该框架适用于脑肿瘤亚区的分割,随后在分类定位图(CLM)模块和分割模块之间实现了相互增强策略。视网膜 U-Net 经过训练可以准确识别感兴趣区域和整个肿瘤(WT)的特征图,然后将这些特征图传输到 CLM 模块和分割模块。随后,CLM 模块生成的 CLM 与分割模块相结合,形成相互增强策略。这样,我们的框架首先通过视网膜 U-Net 关注 WT,由于 WT 由亚区组成,因此相互增强策略进一步旨在对嵌入在 WT 中的亚区进行分类和分割。我们在包含 369 例的 BraTS 2020 数据集上实现和评估了我们的框架。我们在 200 个数据集上进行了 5 折交叉验证,并在其余 169 个数据集上进行了保留测试。为了证明我们网络设计的有效性,我们将我们的方法与没有视网膜 U-Net、相互增强策略和最近发表的级联 U-Net 架构的网络进行了比较。所有四种方法的结果均与分割和定位精度的地面真实值进行了比较。在验证数据集和保留数据集上,与所有三种竞争方法相比,我们的方法在所有肿瘤标签(坏死和非增强、水肿、增强肿瘤、WT、肿瘤核心)上的 Dice 相似系数、质心距离和体积差异的得分均显著提高(<0.01)。这项工作的整体定量和统计结果证明了我们的方法在准确和自动分割脑肿瘤亚区方面的能力。