Suppr超能文献

具有自学习能力的全光尖峰神经突触网络。

All-optical spiking neurosynaptic networks with self-learning capabilities.

机构信息

Institute of Physics, University of Münster, Münster, Germany.

Department of Materials, University of Oxford, Oxford, UK.

出版信息

Nature. 2019 May;569(7755):208-214. doi: 10.1038/s41586-019-1157-8. Epub 2019 May 8.

Abstract

Software implementations of brain-inspired computing underlie many important computational tasks, from image processing to speech recognition, artificial intelligence and deep learning applications. Yet, unlike real neural tissue, traditional computing architectures physically separate the core computing functions of memory and processing, making fast, efficient and low-energy computing difficult to achieve. To overcome such limitations, an attractive alternative is to design hardware that mimics neurons and synapses. Such hardware, when connected in networks or neuromorphic systems, processes information in a way more analogous to brains. Here we present an all-optical version of such a neurosynaptic system, capable of supervised and unsupervised learning. We exploit wavelength division multiplexing techniques to implement a scalable circuit architecture for photonic neural networks, successfully demonstrating pattern recognition directly in the optical domain. Such photonic neurosynaptic networks promise access to the high speed and high bandwidth inherent to optical systems, thus enabling the direct processing of optical telecommunication and visual data.

摘要

基于脑启发计算的软件实现为许多重要的计算任务提供了基础,从图像处理到语音识别、人工智能和深度学习应用等。然而,与真实的神经组织不同,传统的计算架构在物理上分离了存储和处理的核心计算功能,使得快速、高效和低能耗的计算难以实现。为了克服这些限制,一种有吸引力的替代方案是设计模仿神经元和突触的硬件。这种硬件在网络或神经形态系统中连接时,以更类似于大脑的方式处理信息。在这里,我们提出了这样一个神经突触系统的全光版本,能够进行有监督和无监督学习。我们利用波分复用技术为光子神经网络实现了可扩展的电路架构,成功地直接在光学域中实现了模式识别。这种光子神经突触网络有望获得光学系统固有的高速和高带宽,从而能够直接处理光通信和视觉数据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验