Suppr超能文献

结核样匐行性脉络膜视网膜炎患者中预测矛盾性恶化的自动病变分割和定量。

Automated lesion segmentation and quantification for prediction of paradoxical worsening in patients with tubercular serpiginous-like choroiditis.

机构信息

Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA.

Eye Institute, Cleveland Clinic Abu Dhabi (CCAD), Abu Dhabi, UAE.

出版信息

Sci Rep. 2022 Mar 30;12(1):5392. doi: 10.1038/s41598-022-09338-y.

Abstract

To develop and evaluate a fully automated pipeline that analyzes color fundus images in patients with tubercular serpiginous-like choroiditis (TB SLC) for prediction of paradoxical worsening (PW). In this retrospective study, patients with TB SLC with a follow-up of 9 months after initiation of anti-tubercular therapy were included. A fully automated custom-designed pipeline was developed which was initially tested using 12 baseline color fundus photographs for assessment of repeatability. After confirming reliability using Bland-Altman plots and intraclass correlation coefficient (ICC), the pipeline was deployed for all patients. The images were preprocessed to exclude the optic nerve from the fundus photo using a single-shot trainable WEKA segmentation algorithm. Two automatic thresholding algorithms were applied, and quantitative metrics were generated. These metrics were compared between PW + and PW- groups using non-parametric tests. A logistic regression model was used to predict probability of PW for assessing binary classification performance and receiver operator curves were generated to choose a sensitivity-optimized threshold. The study included 139 patients (139 eyes; 92 males and 47 females; mean age: 44.8 ± 11.3 years) with TB SLC. Pilot analysis of 12 images showed an excellent ICC for measuring the mean area, intensity, and integrated pixel intensity (all ICC > 0.89). The PW + group had significantly higher mean lesion area (p = 0.0152), mean pixel intensity (p = 0.0181), and integrated pixel intensity (p < 0.0001) compared to the PW- group. Using a sensitivity optimized threshold cut-off for mean pixel intensity, an area under the curve of 0.87 was achieved (sensitivity: 96.80% and specificity: 72.09%). Automated calculation of lesion metrics such as mean pixel intensity and segmented area in TB SLC is a novel approach with good repeatability in predicting PW during the follow-up.

摘要

开发并评估了一种全自动分析结核性匐行脉络膜病变(TB SLC)患者眼底彩色图像的流水线,以预测反常恶化(PW)。本回顾性研究纳入了抗结核治疗后随访 9 个月的 TB SLC 患者。开发了一种全自动定制流水线,首先使用 12 张基线眼底彩色照片进行评估,以验证其重复性。使用 Bland-Altman 图和组内相关系数(ICC)确认可靠性后,将该流水线应用于所有患者。使用单-shot 可训练 WEKA 分割算法从眼底照片中排除视神经,对图像进行预处理。应用两种自动阈值算法,并生成定量指标。使用非参数检验比较 PW+和 PW-组之间的指标。使用逻辑回归模型预测 PW 发生的概率,以评估二分类性能,并生成接收者操作特征曲线选择敏感性优化阈值。本研究纳入了 139 名 TB SLC 患者(139 只眼;92 名男性和 47 名女性;平均年龄:44.8±11.3 岁)。对 12 张图像的初步分析显示,测量平均面积、强度和积分像素强度的 ICC 均非常好(均 ICC>0.89)。PW+组的平均病变面积(p=0.0152)、平均像素强度(p=0.0181)和积分像素强度(p<0.0001)显著高于 PW-组。使用平均像素强度的优化敏感性阈值,曲线下面积为 0.87(敏感性:96.80%,特异性:72.09%)。在 TB SLC 中,自动计算病变指标(如平均像素强度和分割面积)是一种新方法,可用于预测随访期间的 PW,且重复性良好。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4af5/8967847/1ddf54cd92b3/41598_2022_9338_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验