Suppr超能文献

Weibull 模型在食品科学中的实际应用的重参数化。

Reparameterization of the Weibull model for practical uses in food science.

机构信息

Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy.

出版信息

J Food Sci. 2022 May;87(5):2096-2111. doi: 10.1111/1750-3841.16124. Epub 2022 Mar 31.

Abstract

The reparameterization of the Weibull cumulative distribution function and its survival function was performed to obtain meaningful parameters in food and biological sciences such as the lag phase (λ), the maximum rate ( ), and the maximum increase/decrease of the function (A). The application of the Lambert function was crucial in order to achieve an explicit mathematical solution. Since the reparameterized model is applicable only when the shape parameter (α) is greater than one, the Weibull model was modified with the introduction of a new parameter ( ) that represents the model rate at time β (scale parameter). All models were applied to literature data on food technology and microbiology topics: Microbial growth, thermal microbial inactivation, thermal degradation kinetics, and particle size distributions. The Weibull model and the reparameterized versions showed identical fitting performance in terms of coefficient of determination, residual mean standard error, values of residuals, and estimated values of the parameters. Some faults in the datasets used in this study permitted to re-mark the criticality of a good experimental plan when data modeling is approached. The parameter resulted in an interesting new rate parameter that is not correlated with the scale parameter ( = 0.64 ± 0.37) and highly correlated with the shape parameter ( = 0.90 ± 0.11). Also, the reparameterization of the Weibull probability density function was performed by using both the standard and new parameters and applied to experimental data and gave useful information from the distribution curve, such as the value of the mode ( ) and a measure of the curve skewness (λ).

摘要

对威布尔累积分布函数和生存函数进行了重新参数化,以获得食品和生物科学领域有意义的参数,如滞后期(λ)、最大速率( )和函数的最大增加/减少(A)。为了得到明确的数学解,Lambert 函数的应用是至关重要的。由于重新参数化的模型仅在形状参数(α)大于 1 时适用,因此通过引入一个新参数( )来修改威布尔模型,该参数代表模型在时间β(尺度参数)时的速率。所有模型都应用于食品技术和微生物学主题的文献数据:微生物生长、热微生物失活、热降解动力学和粒径分布。威布尔模型和重新参数化版本在决定系数、残差平均标准误差、残差值和参数估计值方面表现出相同的拟合性能。本研究中使用的数据集存在一些缺陷,这再次强调了当涉及到数据建模时,制定良好的实验计划的重要性。参数 产生了一个有趣的新速率参数,它与尺度参数( = 0.64 ± 0.37)不相关,但与形状参数( = 0.90 ± 0.11)高度相关。此外,通过使用标准参数和新参数对威布尔概率密度函数进行了重新参数化,并将其应用于实验数据,从分布曲线中获得了有用的信息,如众数( )的值和曲线偏度(λ)的度量。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验