Department of Physics and Astronomy, Northwestern University, Evanston, IL, 60208, USA.
Department of Physics, Loyola University Chicago, Chicago, IL, 60660, USA.
Adv Sci (Weinh). 2022 May;9(16):e2104906. doi: 10.1002/advs.202104906. Epub 2022 Mar 31.
Synaptic polarity, that is, whether synapses are inhibitory (-) or excitatory (+), is challenging to map, despite being a key to understand brain function. Here, synaptic polarity is inferred computationally considering three experimental scenarios, depending on the nature of available input data, using the Caenorhabditis elegans connectome as an example. First, the inputs consist of detailed neurotransmitter (NT) and receptor (R) gene expression, integrated through the connectome model (CM). The CM formulates the problem through a wiring rule network that summarizes how NT-R pairs govern synaptic polarity, and resolves 356 synaptic polarities in addition to the 1752 known polarities. Second, known synaptic polarities are considered as an input, in addition to the NT and R gene expression data, but without wiring rules. These data train the spatial connectome model, which infers the polarity of 81% of the CM-resolved connections at % precision, while also inferring 147 of the remaining unknown polarities. Last, without known expression or wiring rules, polarities are inferred through a network sign prediction problem. As an illustration of high performance in this case, the generalized CM is introduced. These results address imminent challenges in unveiling large-scale synaptic polarities, an essential step toward more realistic brain models.
突触极性,即突触是抑制性(-)还是兴奋性(+),尽管是理解大脑功能的关键,但很难进行映射。在这里,考虑到可用输入数据的性质,通过使用秀丽隐杆线虫连接组作为示例,从计算的角度推断突触极性。首先,输入包括详细的神经递质 (NT) 和受体 (R) 基因表达,通过连接组模型 (CM) 进行整合。CM 通过总结 NT-R 对如何控制突触极性的布线规则网络来构建问题,并解决 356 个突触极性,此外还解决了 1752 个已知极性。其次,除了 NT 和 R 基因表达数据外,还将已知的突触极性作为输入,但没有布线规则。这些数据训练了空间连接组模型,该模型以 %的精度推断出 CM 解析连接的 81%的极性,同时还推断出其余 147 个未知极性。最后,在没有已知表达或布线规则的情况下,通过网络符号预测问题推断极性。作为这种情况下高性能的说明,引入了广义 CM。这些结果解决了揭示大规模突触极性的紧迫挑战,这是构建更现实的大脑模型的重要步骤。