Suppr超能文献

用于自主受限空间导航的3D打印自学习三链接球体机器人。

A 3D-Printed Self-Learning Three-Linked-Sphere Robot for Autonomous Confined-Space Navigation.

作者信息

Elder Brian, Zou Zonghao, Ghosh Samannoy, Silverberg Oliver, Greenwood Taylor E, Demir Ebru, Su Vivian Song-En, Pak On Shun, Kong Yong Lin

机构信息

Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112, USA.

Department of Mechanical Engineering, Santa Clara University, Santa Clara, CA 95053, USA.

出版信息

Adv Intell Syst. 2021 Sep;3(9). doi: 10.1002/aisy.202100039. Epub 2021 Jun 26.

Abstract

Reinforcement learning control methods can impart robots with the ability to discover effective behavior, reducing their modeling and sensing requirements, and enabling their ability to adapt to environmental changes. However, it remains challenging for a robot to achieve navigation in confined and dynamic environments, which are characteristic of a broad range of biomedical applications, such as endoscopy with ingestible electronics. Herein, a compact, 3D-printed three-linked-sphere robot synergistically integrated with a reinforcement learning algorithm that can perform adaptable, autonomous crawling in a confined channel is demonstrated. The scalable robot consists of three equally sized spheres that are linearly coupled, in which the extension and contraction in specific sequences dictate its navigation. The ability to achieve bidirectional locomotion across frictional surfaces in open and confined spaces without prior knowledge of the environment is also demonstrated. The synergistic integration of a highly scalable robotic apparatus and the model-free reinforcement learning control strategy can enable autonomous navigation in a broad range of dynamic and confined environments. This capability can enable sensing, imaging, and surgical processes in previously inaccessible confined environments in the human body.

摘要

强化学习控制方法可以赋予机器人发现有效行为的能力,降低其建模和传感要求,并使其能够适应环境变化。然而,对于机器人来说,在狭窄且动态的环境中实现导航仍然具有挑战性,而这种环境是广泛的生物医学应用的特点,例如可摄入电子器件的内窥镜检查。在此,展示了一种紧凑的、3D打印的三链接球体机器人,它与强化学习算法协同集成,能够在狭窄通道中进行适应性自主爬行。这种可扩展的机器人由三个大小相等的球体线性耦合组成,其中特定顺序的伸展和收缩决定了它的导航。还展示了在无需事先了解环境的情况下,在开放和狭窄空间中跨越摩擦表面实现双向运动的能力。高度可扩展的机器人装置与无模型强化学习控制策略的协同集成,可以在广泛的动态和狭窄环境中实现自主导航。这种能力可以在人体以前无法进入的狭窄环境中实现传感、成像和手术过程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9825/8963778/763ea1f0068f/nihms-1741123-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验