Suppr超能文献

通过强化学习实现协同爬行

Coordinated crawling via reinforcement learning.

作者信息

Mishra Shruti, van Rees Wim M, Mahadevan L

机构信息

Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.

Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

出版信息

J R Soc Interface. 2020 Aug;17(169):20200198. doi: 10.1098/rsif.2020.0198. Epub 2020 Aug 26.

Abstract

Rectilinear crawling locomotion is a primitive and common mode of locomotion in slender soft-bodied animals. It requires coordinated contractions that propagate along a body that interacts frictionally with its environment. We propose a simple approach to understand how this coordination arises in a neuromechanical model of a segmented, soft-bodied crawler via an iterative process that might have both biological antecedents and technological relevance. Using a simple reinforcement learning algorithm, we show that an initial all-to-all neural coupling converges to a simple nearest-neighbour neural wiring that allows the crawler to move forward using a localized wave of contraction that is qualitatively similar to what is observed in larvae and used in many biomimetic solutions. The resulting solution is a function of how we weight gait regularization in the reward, with a trade-off between speed and robustness to proprioceptive noise. Overall, our results, which embed the brain-body-environment triad in a learning scheme, have relevance for soft robotics while shedding light on the evolution and development of locomotion.

摘要

直线爬行运动是细长软体动物中一种原始且常见的运动方式。它需要协调收缩,这种收缩沿着与环境存在摩擦相互作用的身体进行传播。我们提出一种简单方法,通过一个可能具有生物学先例和技术相关性的迭代过程,来理解在分段软体爬虫的神经力学模型中这种协调是如何产生的。使用一种简单的强化学习算法,我们表明初始的全对全神经耦合会收敛到一种简单的近邻神经连接方式,这种方式使爬虫能够利用局部收缩波向前移动,该收缩波在定性上类似于在幼虫中观察到的情况,并且在许多仿生解决方案中也有应用。最终的解决方案取决于我们在奖励中对步态正则化的加权方式,在速度和对本体感觉噪声的鲁棒性之间存在权衡。总体而言,我们将脑 - 体 - 环境三元组嵌入学习方案的结果,对软体机器人技术具有重要意义,同时也为运动的进化和发展提供了启示。

相似文献

1
Coordinated crawling via reinforcement learning.通过强化学习实现协同爬行
J R Soc Interface. 2020 Aug;17(169):20200198. doi: 10.1098/rsif.2020.0198. Epub 2020 Aug 26.
7
Piezo-like Gene Regulates Locomotion in Drosophila Larvae.Piezo 样基因调控果蝇幼虫的运动。
Cell Rep. 2019 Feb 5;26(6):1369-1377.e4. doi: 10.1016/j.celrep.2019.01.055.
9
Signatures of proprioceptive control in locomotion.本体感受控制在运动中的特征。
Philos Trans R Soc Lond B Biol Sci. 2018 Sep 10;373(1758):20180208. doi: 10.1098/rstb.2018.0208.
10
Gait-optimized locomotion of wave-driven soft sheets.波浪驱动软片的步态优化运动。
Soft Matter. 2020 Apr 29;16(16):3991-3999. doi: 10.1039/c9sm02103e.

本文引用的文献

2
Modelling the mechanics of exploration in larval Drosophila.幼虫果蝇探索行为的力学建模。
PLoS Comput Biol. 2019 Jul 5;15(7):e1006635. doi: 10.1371/journal.pcbi.1006635. eCollection 2019 Jul.
4
Mastering the game of Go without human knowledge.无需人类知识即可掌握围棋游戏。
Nature. 2017 Oct 18;550(7676):354-359. doi: 10.1038/nature24270.
6
Flow Navigation by Smart Microswimmers via Reinforcement Learning.智能微型游泳器通过强化学习实现流动导航。
Phys Rev Lett. 2017 Apr 14;118(15):158004. doi: 10.1103/PhysRevLett.118.158004. Epub 2017 Apr 12.
7
Neural Circuits Underlying Fly Larval Locomotion.果蝇幼虫运动的神经回路
Curr Pharm Des. 2017;23(12):1722-1733. doi: 10.2174/1381612822666161208120835.
8
Learning to soar in turbulent environments.学会在动荡环境中翱翔。
Proc Natl Acad Sci U S A. 2016 Aug 16;113(33):E4877-84. doi: 10.1073/pnas.1606075113. Epub 2016 Aug 1.
9
Developmental neuroscience: how twitches make sense.发育神经科学:抽搐如何具有意义。
Curr Biol. 2014 Oct 6;24(19):R971-2. doi: 10.1016/j.cub.2014.08.052.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验