He Naifeng, Yang Zhong, Bu Chunguang, Fan Xiaoliang, Wu Jiying, Sui Yaoyu, Que Wenqiang
College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.
State Key Laboratory of Robotics, Shenyang Institute of Automation Chinese Academy of Sciences, Shenyang 110017, China.
Sensors (Basel). 2024 Sep 12;24(18):5925. doi: 10.3390/s24185925.
Autonomous decision-making is a hallmark of intelligent mobile robots and an essential element of autonomous navigation. The challenge is to enable mobile robots to complete autonomous navigation tasks in environments with mapless or low-precision maps, relying solely on low-precision sensors. To address this, we have proposed an innovative autonomous navigation algorithm called PEEMEF-DARC. This algorithm consists of three parts: Double Actors Regularized Critics (DARC), a priority-based excellence experience data collection mechanism, and a multi-source experience fusion strategy mechanism. The algorithm is capable of performing autonomous navigation tasks in unmapped and unknown environments without maps or prior knowledge. This algorithm enables autonomous navigation in unmapped and unknown environments without the need for maps or prior knowledge. Our enhanced algorithm improves the agent's exploration capabilities and utilizes regularization to mitigate the overestimation of state-action values. Additionally, the priority-based excellence experience data collection module and the multi-source experience fusion strategy module significantly reduce training time. Experimental results demonstrate that the proposed method excels in navigating the unmapped and unknown, achieving effective navigation without relying on maps or precise localization.
自主决策是智能移动机器人的一个标志,也是自主导航的一个基本要素。挑战在于使移动机器人能够在没有地图或低精度地图的环境中,仅依靠低精度传感器完成自主导航任务。为了解决这个问题,我们提出了一种名为PEEMEF-DARC的创新自主导航算法。该算法由三部分组成:双智能体正则化评论家(DARC)、基于优先级的卓越经验数据收集机制和多源经验融合策略机制。该算法能够在没有地图或先验知识的未映射和未知环境中执行自主导航任务。我们改进后的算法提高了智能体的探索能力,并利用正则化来减轻对状态-动作值的高估。此外,基于优先级的卓越经验数据收集模块和多源经验融合策略模块显著减少了训练时间。实验结果表明,所提出的方法在未映射和未知环境中的导航方面表现出色,无需依赖地图或精确定位就能实现有效导航。