Suppr超能文献

一种区分小脉络膜黑色素瘤与脉络膜痣的预测模型。

A Prediction Model to Discriminate Small Choroidal Melanoma from Choroidal Nevus.

作者信息

Zabor Emily C, Raval Vishal, Luo Shiming, Pelayes David E, Singh Arun D

机构信息

Taussig Cancer Institute, Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio, USA.

Cole Eye Institute, Ophthalmic Oncology, Cleveland Clinic, Cleveland, Ohio, USA.

出版信息

Ocul Oncol Pathol. 2022 Feb;8(1):71-78. doi: 10.1159/000521541. Epub 2021 Dec 22.

Abstract

OBJECTIVE

This study aimed to develop a validated machine learning model to diagnose small choroidal melanoma.

DESIGN

This is a cohort study.

SUBJECTS PARTICIPANTS AND/OR CONTROLS: The training data included 123 patients diagnosed as small choroidal melanocytic tumor (5.0-16.0 mm in largest basal diameter and 1.0 mm-2.5 mm in height; Collaborative Ocular Melanoma Study criteria). Those diagnosed as melanoma ( = 61) had either documented growth or pathologic confirmation. Sixty-two patients with stable lesions classified as choroidal nevus were used as negative controls. The external validation dataset included 240 patients managed at a different tertiary clinic, also with small choroidal melanocytic tumor, observed for malignant growth.

METHODS

In the training data, lasso logistic regression was used to select variables for inclusion in the final model for the association with melanoma versus choroidal nevus. Internal and external validation was performed to assess model performance.

MAIN OUTCOME MEASURES

The main outcome measure is the predicted probability of small choroidal melanoma.

RESULTS

Distance to optic disc ≥3 mm and drusen were associated with decreased odds of melanoma, whereas male versus female sex, increased height, subretinal fluid, and orange pigment were associated with increased odds of choroidal melanoma. The area under the receiver operating characteristic "discrimination value" for this model was 0.880. The top four variables that were most frequently selected for inclusion in the model on internal validation, implying their importance as predictors of melanoma, were subretinal fluid, height, distance to optic disc, and orange pigment. When tested against the validation data, the prediction model could distinguish between choroidal nevus and melanoma with a high discrimination of 0.861. The final prediction model was converted into an online calculator to generate predicted probability of melanoma.

CONCLUSIONS

To minimize diagnostic uncertainty, a machine learning-based diagnostic prediction calculator can be readily applied for decision-making and counseling patients with small choroidal melanoma.

摘要

目的

本研究旨在开发一种经过验证的机器学习模型,用于诊断小脉络膜黑色素瘤。

设计

这是一项队列研究。

受试者、参与者和/或对照:训练数据包括123例被诊断为小脉络膜黑素细胞肿瘤的患者(最大基底直径5.0 - 16.0毫米,高度1.0毫米 - 2.5毫米;协作性眼黑色素瘤研究标准)。那些被诊断为黑色素瘤(n = 61)的患者有记录的生长情况或病理证实。62例病变稳定且分类为脉络膜痣的患者用作阴性对照。外部验证数据集包括在另一家三级诊所接受治疗的240例患者,他们也患有小脉络膜黑素细胞肿瘤,并观察其是否有恶性生长。

方法

在训练数据中,使用套索逻辑回归来选择纳入最终模型的变量,以分析与黑色素瘤和脉络膜痣的相关性。进行内部和外部验证以评估模型性能。

主要观察指标

主要观察指标是小脉络膜黑色素瘤的预测概率。

结果

距视盘≥3毫米和玻璃膜疣与黑色素瘤的发生几率降低相关,而男性与女性、高度增加、视网膜下液和橙色色素与脉络膜黑色素瘤的发生几率增加相关。该模型的受试者操作特征曲线下面积(“辨别值”)为0.880。在内部验证中最常被选入模型的前四个变量,暗示它们作为黑色素瘤预测指标的重要性,分别是视网膜下液、高度、距视盘距离和橙色色素。在针对验证数据进行测试时,预测模型能够以0.861的高辨别力区分脉络膜痣和黑色素瘤。最终的预测模型被转换为一个在线计算器,以生成黑色素瘤的预测概率。

结论

为了尽量减少诊断不确定性,基于机器学习的诊断预测计算器可轻松应用于小脉络膜黑色素瘤患者的决策制定和咨询。

相似文献

2
Predicting Choroidal Nevus Transformation to Melanoma Using Machine Learning.使用机器学习预测脉络膜痣向黑色素瘤的转变。
Ophthalmol Sci. 2024 Jul 20;5(1):100584. doi: 10.1016/j.xops.2024.100584. eCollection 2025 Jan-Feb.
3
Choroidal Nevus Features Associated with Subspecialty Referral.脉络膜痣的特征与专科转诊相关。
Ophthalmol Retina. 2023 Dec;7(12):1097-1108. doi: 10.1016/j.oret.2023.07.022. Epub 2023 Jul 29.
4

引用本文的文献

1
Malignant Transformation of Choroidal Indeterminate Melanocytic Tumors.脉络膜不确定黑素细胞肿瘤的恶性转化
JAMA Ophthalmol. 2025 Jul 1;143(7):579-586. doi: 10.1001/jamaophthalmol.2025.1262.
2
Growth of indeterminate choroidal melanocytic tumors: Time to malignant transformation.脉络膜黑色素细胞肿瘤的生长:恶变时间。
Taiwan J Ophthalmol. 2025 Feb 6;15(1):73-78. doi: 10.4103/tjo.TJO-D-24-00138. eCollection 2025 Jan-Mar.
6
Predicting Choroidal Nevus Transformation to Melanoma Using Machine Learning.使用机器学习预测脉络膜痣向黑色素瘤的转变。
Ophthalmol Sci. 2024 Jul 20;5(1):100584. doi: 10.1016/j.xops.2024.100584. eCollection 2025 Jan-Feb.
8
Advances in multimodal imaging for diagnosis of pigmented ocular fundus lesions.用于诊断色素性眼底病变的多模态成像进展
Can J Ophthalmol. 2024 Aug;59(4):218-233. doi: 10.1016/j.jcjo.2023.07.005. Epub 2023 Jul 19.

本文引用的文献

8
Small choroidal melanoma.
Ophthalmology. 2008 Dec;115(12):2319-2319.e3. doi: 10.1016/j.ophtha.2008.07.009.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验