Jackson Max, Kalirai Helen, Hussain Rumana N, Heimann Heinrich, Zheng Yalin, Coupland Sarah E
Liverpool Ocular Oncology Research Group, Department of Eye and Vision Science, Institute of Life Course and Medical Sciences (ILCaMS), University of Liverpool, Liverpool, United Kingdom.
Department of Eye and Vision Science, ILCaMS, Liverpool, United Kingdom.
Ophthalmol Sci. 2024 Nov 8;5(2):100647. doi: 10.1016/j.xops.2024.100647. eCollection 2025 Mar-Apr.
Testing the validity of a self-supervised deep learning (DL) model, RETFound, for use on posterior uveal (choroidal) melanoma (UM) and nevus differentiation.
Case-control study.
Ultrawidefield fundoscopy images, both color and autofluorescence, were used for this study, obtained from 4255 patients seen at the Liverpool Ocular Oncology Center between 1995 and 2020.
After excluding poor-quality images, a total of 18 510 UM, 8671 nevi, and 1192 healthy eye images were analyzed. RETFound, a self-supervised DL model for fundus images, was fine-tuned initially for binary classification of UM versus nevi and then retuned for tertiary classification including the healthy eyes.
The performance metrics used to evaluate the model were: area under the receiver operating characteristic curve (AUROC), accuracy, specificity, sensitivity, F1-score, and Matthew's correlation coefficient.
For the binary classification task, the model achieved an accuracy of 0.83 and an AUROC of 0.90 demonstrating good performance for UM versus nevi differentiation. Similarly, for the tertiary classification task, the model showed a mean accuracy of 0.82 and an AUROC of 0.92.
Our findings demonstrate the feasibility of using a self-supervised DL model for differentiation between UM and nevi with high accuracy, in a large cohort with imbalances between images derived from a single center. Validation studies on similarly sized external cohorts are planned to test our model's potential, considering variation of images of choroidal melanoma and nevi in the clinical setting.
Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
测试一种用于后葡萄膜(脉络膜)黑色素瘤(UM)和痣鉴别诊断的自监督深度学习(DL)模型RETFound的有效性。
病例对照研究。
本研究使用了超广角眼底镜检查图像,包括彩色和自发荧光图像,这些图像来自1995年至2020年间在利物浦眼科肿瘤中心就诊的4255名患者。
排除质量不佳的图像后,共分析了18510张UM图像、8671张痣图像和1192张健康眼图像。RETFound是一种用于眼底图像的自监督DL模型,最初针对UM与痣的二元分类进行了微调,然后针对包括健康眼在内的三元分类进行了重新调整。
用于评估该模型的性能指标包括:受试者工作特征曲线下面积(AUROC)、准确率、特异性、敏感性、F1分数和马修斯相关系数。
对于二元分类任务,该模型的准确率为0.83,AUROC为0.90,表明在UM与痣的鉴别诊断中表现良好。同样,对于三元分类任务,该模型的平均准确率为0.82,AUROC为0.92。
我们的研究结果表明,在来自单一中心的图像存在不平衡的大型队列中,使用自监督DL模型对UM和痣进行高精度鉴别是可行的。考虑到临床环境中脉络膜黑色素瘤和痣图像的差异,计划在类似规模的外部队列中进行验证研究,以测试我们模型的潜力。
在本文末尾的脚注和披露中可能会找到专有或商业披露信息。