Department of Biogeochemical Processes, Max Planck Institute for Biogeochemistry, Jena, Germany.
Climate and Environment Department, National Institute of Amazonian Research, Manaus, Brazil.
Plant Biol (Stuttg). 2022 Aug;24(5):721-733. doi: 10.1111/plb.13419. Epub 2022 Mar 31.
Volatile isoprenoids regulate plant performance and atmospheric processes, and Amazon forests comprise the dominant source to the global atmosphere. Still, there is a poor understanding of how isoprenoid emission capacities vary in response to ecophysiological and environmental controls in Amazonian ecosystems. We measured isoprenoid emission capacities of three Amazonian hyperdominant tree species - Protium hebetatum, Eschweilera grandiflora, Eschweilera coriacea - across seasons and along a topographic and edaphic environmental gradient in the central Amazon. From wet to dry season, both photosynthesis and isoprene emission capacities strongly declined, while emissions increased among the heavier isoprenoids: monoterpenes and sesquiterpenes. Plasticity across habitats was most evident in P. hebetatum, which emitted sesquiterpenes only in the dry season, at rates that significantly increased along the hydro-topographic gradient from white sands (shallow root water access) to uplands (deep water table). We suggest that emission composition shifts are part of a plastic response to increasing abiotic stress (e.g. heat and drought) and reduced photosynthetic supply of substrates for isoprenoid synthesis. Our comprehensive measurements suggest that more emphasis should be placed on other isoprenoids, besides isoprene, in the context of abiotic stress responses. Shifting emission compositions have implications for atmospheric responses because of the strong variation in reactivity among isoprenoid compounds.
挥发性异戊二烯调节植物性能和大气过程,而亚马逊森林是向全球大气输送的主要来源。尽管如此,人们对异戊二烯排放能力如何响应亚马逊生态系统中的生理生态和环境控制因素的变化仍知之甚少。我们在亚马逊中部的一个地形和土壤环境梯度上,跨季节和沿地形和土壤环境梯度,测量了三种亚马逊超优势树种——Protium hebetatum、Eschweilera grandiflora 和 Eschweilera coriacea 的异戊二烯排放能力。从湿季到干季,光合作用和异戊二烯排放能力都强烈下降,而更重的异戊二烯(单萜和倍半萜)的排放量增加。在生境之间,可塑性最明显的是 P. hebetatum,它仅在干季排放倍半萜,并且沿着从白沙(浅根水供应)到高地(深地下水位)的水地形梯度,排放量显著增加。我们认为,排放成分的变化是对生物胁迫(如热和干旱)增加和异戊二烯合成底物光合作用供应减少的一种可塑性反应的一部分。我们的综合测量结果表明,在考虑生物胁迫反应时,除了异戊二烯之外,还应该更加重视其他异戊二烯。由于异戊二烯化合物之间的反应性存在强烈差异,因此排放成分的变化对大气反应具有重要意义。