Suppr超能文献

GENESIS:儿茶酚胺能多形性室性心动过速和长 QT 综合征相关基因中不确定意义变异的基因特异性机器学习模型。

GENESIS: Gene-Specific Machine Learning Models for Variants of Uncertain Significance Found in Catecholaminergic Polymorphic Ventricular Tachycardia and Long QT Syndrome-Associated Genes.

机构信息

Department of Computer Science, Trinity College of Arts and Sciences (R.L.D., F.Z.), Duke University.

Medical Scientist Training Program (R.L.D.), Duke University School of Medicine, Durham, NC.

出版信息

Circ Arrhythm Electrophysiol. 2022 Apr;15(4):e010326. doi: 10.1161/CIRCEP.121.010326. Epub 2022 Mar 31.

Abstract

BACKGROUND

Cardiac channelopathies such as catecholaminergic polymorphic tachycardia and long QT syndrome predispose patients to fatal arrhythmias and sudden cardiac death. As genetic testing has become common in clinical practice, variants of uncertain significance (VUS) in genes associated with catecholaminergic polymorphic ventricular tachycardia and long QT syndrome are frequently found. The objective of this study was to predict pathogenicity of catecholaminergic polymorphic ventricular tachycardia-associated VUS and long QT syndrome-associated VUS in , , and by developing gene-specific machine learning models and assessing them using cross-validation, cellular electrophysiological data, and clinical correlation.

METHODS

The GENe-specific EnSemble grId Search framework was developed to identify high-performing machine learning models for , , , and using variant- and protein-specific inputs. Final models were applied to datasets of VUS identified from ClinVar and exome sequencing. Whole cell patch clamp and clinical correlation of selected VUS was performed.

RESULTS

The GENe-specific EnSemble grId Search models outperformed alternative methods, with area under the receiver operating characteristics up to 0.87, average precisions up to 0.83, and calibration slopes as close to 1.0 (perfect) as 1.04. Blinded voltage-clamp analysis of HEK293T cells expressing 2 predicted pathogenic variants in each revealed an ≈80% reduction of peak Kv7.1 current compared with WT. Normal Kv7.1 function was observed in KCNQ1-V241I HEK cells as predicted. Though predicted benign, loss of Kv7.1 function was observed for KCNQ1-V106D HEK cells. Clinical correlation of 9/10 variants supported model predictions.

CONCLUSIONS

Gene-specific machine learning models may have a role in post-genetic testing diagnostic analyses by providing high performance prediction of variant pathogenicity.

摘要

背景

儿茶酚胺多形性室性心动过速和长 QT 综合征等心脏通道病使患者容易发生致命性心律失常和心脏性猝死。随着基因检测在临床实践中的普及,与儿茶酚胺多形性室性心动过速和长 QT 综合征相关的基因中的不确定意义变异(VUS)经常被发现。本研究的目的是通过开发基因特异性机器学习模型,并通过交叉验证、细胞电生理数据和临床相关性来评估这些模型,从而预测儿茶酚胺多形性室性心动过速相关 VUS 和长 QT 综合征相关 VUS 在 、 、 和 中的致病性。

方法

使用变体和蛋白质特异性输入,开发了 GENe-specific EnSemble grId Search 框架,以识别用于 、 、 、 和 的高性能机器学习模型。最终模型应用于 ClinVar 和外显子组测序中确定的 VUS 数据集。对选定的 VUS 进行全细胞膜片钳和临床相关性分析。

结果

GENe-specific EnSemble grId Search 模型的表现优于其他方法,其接收者操作特征曲线下面积高达 0.87,平均精度高达 0.83,校准斜率接近 1.0(完美),为 1.04。对表达 2 种每种预测致病性变异的 HEK293T 细胞进行盲电压钳分析,发现与 WT 相比,Kv7.1 电流峰值降低约 80%。预测 KCNQ1-V241I HEK 细胞中 Kv7.1 功能正常。虽然预测为良性,但观察到 KCNQ1-V106D HEK 细胞中 Kv7.1 功能丧失。9/10 个变体的临床相关性支持模型预测。

结论

基因特异性机器学习模型通过提供对变异致病性的高性能预测,可能在基因检测后诊断分析中发挥作用。

相似文献

5
Whole-Exome Molecular Autopsy After Exertion-Related Sudden Unexplained Death in the Young.
Circ Cardiovasc Genet. 2016 Jun;9(3):259-65. doi: 10.1161/CIRCGENETICS.115.001370. Epub 2016 Apr 25.
6
Yield of genetic screening in inherited cardiac channelopathies: how to prioritize access to genetic testing.
Circ Arrhythm Electrophysiol. 2009 Feb;2(1):6-15. doi: 10.1161/CIRCEP.108.782888. Epub 2009 Feb 10.
9
Pathogenicity Assignment of Variants in Genes Associated With Cardiac Channelopathies Evolve Toward Diagnostic Uncertainty.
Circ Genom Precis Med. 2022 Jun;15(3):e003491. doi: 10.1161/CIRCGEN.121.003491. Epub 2022 May 11.
10
A novel variant of RyR2 gene in a family misdiagnosed as congenital long QT syndrome: The importance of genetic testing.
J Electrocardiol. 2020 May-Jun;60:8-11. doi: 10.1016/j.jelectrocard.2020.03.001. Epub 2020 Mar 5.

引用本文的文献

1
Beyond the Beat, Next-Generation Sequencing Discovery of Novel Gene Variant in Long QT Syndrome.
Cardiol Res Pract. 2025 Aug 27;2025:1928541. doi: 10.1155/crp/1928541. eCollection 2025.
2
Artificial Intelligence in Diagnosis of Long QT Syndrome: A Review of Current State, Challenges, and Future Perspectives.
Mayo Clin Proc Digit Health. 2023 Dec 18;2(1):21-31. doi: 10.1016/j.mcpdig.2023.11.003. eCollection 2024 Mar.
4
Structural Evaluation of -CPVT Missense Variants and Continuous Bayesian Estimates of their Penetrance.
medRxiv. 2025 Mar 21:2025.03.20.25324327. doi: 10.1101/2025.03.20.25324327.
8
The Genetic Basis of Sudden Cardiac Death: From Diagnosis to Emerging Genetic Therapies.
Annu Rev Med. 2025 Jan;76(1):283-299. doi: 10.1146/annurev-med-042423-042903. Epub 2025 Jan 16.
9
Precision medicine in catecholaminergic polymorphic ventricular tachycardia: Recent advances toward personalized care.
Ann Pediatr Cardiol. 2023 Nov-Dec;16(6):431-446. doi: 10.4103/apc.apc_96_23. Epub 2024 Apr 23.

本文引用的文献

2
Inferring the molecular and phenotypic impact of amino acid variants with MutPred2.
Nat Commun. 2020 Nov 20;11(1):5918. doi: 10.1038/s41467-020-19669-x.
3
The mutational constraint spectrum quantified from variation in 141,456 humans.
Nature. 2020 May;581(7809):434-443. doi: 10.1038/s41586-020-2308-7. Epub 2020 May 27.
4
Value of a Machine Learning Approach for Predicting Clinical Outcomes in Young Patients With Hypertension.
Hypertension. 2020 May;75(5):1271-1278. doi: 10.1161/HYPERTENSIONAHA.119.13404. Epub 2020 Mar 16.
5
Prediction of prognosis in patients with tetralogy of Fallot based on deep learning imaging analysis.
Heart. 2020 Jul;106(13):1007-1014. doi: 10.1136/heartjnl-2019-315962. Epub 2020 Mar 11.
6
Improving Mortality Predictions for Patients With Mechanical Circulatory Support Using Follow-Up Data and Machine Learning.
Circ Genom Precis Med. 2020 Apr;13(2):e002877. doi: 10.1161/CIRCGEN.119.002877. Epub 2020 Mar 11.
7
Direct-to-consumer genetic testing.
BMJ. 2019 Oct 16;367:l5688. doi: 10.1136/bmj.l5688.
10
Ensembl 2019.
Nucleic Acids Res. 2019 Jan 8;47(D1):D745-D751. doi: 10.1093/nar/gky1113.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验