Suppr超能文献

采用人体测量学、生物阻抗分析和双能 X 线吸收法评估的肥胖与非肥胖绝经后女性心血管代谢危险因素的关系:CoLaus/OsteoLaus 队列研究。

Association of adiposity evaluated by anthropometric, BIA, and DXA measures with cardiometabolic risk factors in nonobese postmenopausal women: the CoLaus/OsteoLaus cohort.

机构信息

Department of Medicine, Internal Medicine, Lausanne University Hospital (CHUV), Lausanne, Switzerland; and.

Bone Unit, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland.

出版信息

Menopause. 2022 Jan 24;29(4):450-459. doi: 10.1097/GME.0000000000001930.

Abstract

OBJECTIVE

After menopause, body composition changes with body fat accumulation, and an increase in cardiometabolic risk factors. Total fat mass, regional fat mass, and visceral adipose tissue (VAT) may be estimated with anthropometric measures, bioelectrical impedance analysis (BIA), and dual-energy X-ray absorptiometry (DXA). The aim of our study was to assess which measurement correlated best with cardiometabolic risk factors in healthy nonobese postmenopausal women.

METHODS

The CoLaus/OsteoLaus cohort included 1,500 postmenopausal women (age range 50-80). We analyzed correlations between: 1) measurements of body composition assessed by anthropometric measures, BIA, and DXA and 2) these measurements and different selected cardiometabolic risk factors, such as blood pressure, lipid markers (cholesterol subtypes and triglycerides), and metabolic markers (glucose, insulin, adiponectin, and leptin). Spearman correlation coefficient, stepwise forward regression, and linear regression analyses were used to determine association between anthropometric measurements and cardiometabolic risk factors.

RESULTS

In the 803 included participants (mean age 62.0 ± 7.1 y, mean body mass index 25.6 kg/m2 ± 4.4), correlations between total fat mass measured by BIA and total fat mass, android fat, gynoid fat, or VAT measured by DXA are very strong (from r = 0.531, [99% confidence interval (CI), 0.443-0.610] to r = 0.704, [99% CI, 0.640-0.758]). Body mass index and waist circumference have a higher correlation with VAT (r = 0.815, [99% CI, 0.772-0.851] and r = 0.823 [99% CI, 0.782-0.858], respectively) than BIA (r = 0.672 [99% CI, 0.603-0.731]). Among the anthropometric measurement and the measurements derived from DXA and BIA, VAT is the parameter most strongly associated with cardiometabolic risk factors. VAT better explains the variation of most of the cardiometabolic risk factors than age and treatment. For example, nearly 5% of the variability of the diastolic blood pressure (9.9 vs 4.9), nearly 15% of the variability of high-density lipoprotein cholesterol (20.3 vs 3.8) and triglyceride (21.1 vs 6.5), 25.3% of the variability of insulin (33.3 vs 8.1), and 37.5% of the variability of leptin (37.7 vs 1.1) were explained by VAT.

CONCLUSIONS

BIA seems not to be a good tool to assess VAT. At the population level, waist circumference and body mass index seem to be good tools to estimate VAT. VAT measured by DXA is the parameter most correlated with cardiometabolic risk factors and could become a component of the cardiometabolic marker on its own.

摘要

目的

绝经后,身体成分随体脂积累而变化,心血管代谢风险因素增加。总脂肪量、局部脂肪量和内脏脂肪组织(VAT)可以通过人体测量、生物电阻抗分析(BIA)和双能 X 射线吸收法(DXA)来估计。我们的研究目的是评估在健康非肥胖绝经后妇女中,哪种测量方法与心血管代谢风险因素相关性最好。

方法

科洛aus/OsteoLaus 队列包括 1500 名绝经后妇女(年龄 50-80 岁)。我们分析了以下方面之间的相关性:1)通过人体测量、BIA 和 DXA 评估的身体成分测量值,以及 2)这些测量值与不同的选定心血管代谢风险因素(如血压、血脂标志物(胆固醇亚型和甘油三酯)和代谢标志物(葡萄糖、胰岛素、脂联素和瘦素)之间的相关性。使用 Spearman 相关系数、逐步向前回归和线性回归分析来确定人体测量值与心血管代谢风险因素之间的关联。

结果

在纳入的 803 名参与者中(平均年龄 62.0±7.1 岁,平均 BMI 25.6kg/m2±4.4),BIA 测量的总脂肪量与 DXA 测量的总脂肪量、安卓脂肪量、女性脂肪量或 VAT 之间的相关性非常强(从 r=0.531[99%置信区间(CI):0.443-0.610]到 r=0.704[99%CI:0.640-0.758])。BMI 和腰围与 VAT 的相关性更高(r=0.815[99%CI:0.772-0.851]和 r=0.823[99%CI:0.782-0.858]),而 BIA 为 r=0.672[99%CI:0.603-0.731])。在人体测量和 DXA 和 BIA 得出的测量值中,VAT 是与心血管代谢风险因素相关性最强的参数。与年龄和治疗相比,VAT 更好地解释了大多数心血管代谢风险因素的变化。例如,舒张压的变异度近 5%(9.9 比 4.9),高密度脂蛋白胆固醇的变异度近 15%(20.3 比 3.8)和甘油三酯(21.1 比 6.5),胰岛素的变异度 25.3%(33.3 比 8.1)和瘦素的变异度 37.5%(37.7 比 1.1)可以通过 VAT 来解释。

结论

BIA 似乎不是评估 VAT 的好工具。在人群水平上,腰围和 BMI 似乎是估计 VAT 的良好工具。DXA 测量的 VAT 是与心血管代谢风险因素相关性最强的参数,并且可以作为自身心血管代谢标志物的一个组成部分。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验