Suppr超能文献

比较用于处理风险计算器中系统性缺失输入值的插补方法。

Comparing imputation approaches to handle systematically missing inputs in risk calculators.

作者信息

Mühlemann Anja, Stange Philip, Faul Antoine, Lozza-Fiacco Serena, Iskandar Rowan, Moraru Manuela, Theis Susanne, Stute Petra, Spycher Ben D, Ginsbourger David

机构信息

Institute of Mathematical Statistics and Actuarial Science, University of Bern, Bern, Switzerland.

Gynäkopsychiatrie, Psychiatrie St. Gallen, St. Gallen, Switzerland.

出版信息

PLOS Digit Health. 2025 Jan 30;4(1):e0000712. doi: 10.1371/journal.pdig.0000712. eCollection 2025 Jan.

Abstract

Risk calculators based on statistical and/or mechanistic models have flourished and are increasingly available for a variety of diseases. However, in the day-to-day practice, their usage may be hampered by missing input variables. Certain measurements needed to calculate disease risk may be difficult to acquire, e.g. because they necessitate blood draws, and may be systematically missing in the population of interest. We compare several deterministic and probabilistic imputation approaches to surrogate predictions from risk calculators while accounting for uncertainty due to systematically missing inputs. The considered approaches predict missing inputs from available ones. In the case of probabilistic imputation, this leads to probabilistic prediction of the risk. We compare the methods using scoring techniques for forecast evaluation, with a focus on the Brier and CRPS scores. We also discuss the classification of patients into risk groups defined by thresholding predicted probabilities. While the considered procedures are not meant to replace fully-informed risk calculations, employing them to get first indications of risk distribution in the absence of at least one input parameter may find useful applications in medical practice. To illustrate this, we use the SCORE2 risk calculator for cardiovascular disease and a data set including medical data from 359 women, obtained from the gynecology department at the Inselspital in Bern, Switzerland. Using this data set, we mimic the situation where some input parameters, blood lipids and blood pressure, are systematically missing and compute the SCORE2 risk by probabilistic imputation of the missing variables based on the remaining input variables. We compare this approach to established imputation techniques like MICE by means of scoring rules and visualize in turn how probabilistic imputation can be used in sample size considerations.

摘要

基于统计和/或机制模型的风险计算器蓬勃发展,越来越多地可用于各种疾病。然而,在日常实践中,其使用可能会因输入变量缺失而受到阻碍。计算疾病风险所需的某些测量可能难以获得,例如,因为它们需要抽血,并且在感兴趣的人群中可能会系统性地缺失。我们比较了几种确定性和概率性插补方法与风险计算器的替代预测,同时考虑了由于系统性缺失输入而导致的不确定性。所考虑的方法根据可用变量预测缺失变量。在概率性插补的情况下,这会导致对风险的概率性预测。我们使用评分技术进行预测评估来比较这些方法,重点关注布里尔(Brier)分数和连续秩次概率得分(CRPS)。我们还讨论了将患者分类为通过预测概率阈值定义的风险组。虽然所考虑的程序并非旨在取代充分知情的风险计算,但在至少一个输入参数缺失的情况下,使用它们来初步了解风险分布可能在医学实践中找到有用的应用。为了说明这一点,我们使用心血管疾病的SCORE2风险计算器和一个包含359名女性医疗数据的数据集,该数据集来自瑞士伯尔尼因塞尔医院的妇科。使用这个数据集,我们模拟了一些输入参数(血脂和血压)系统性缺失的情况,并通过基于其余输入变量对缺失变量进行概率性插补来计算SCORE2风险。我们通过评分规则将这种方法与如多重填补法(MICE)等既定的插补技术进行比较,并依次可视化概率性插补如何用于样本量考虑。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/943d/11781665/d7466fe13af6/pdig.0000712.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验