Suppr超能文献

设计-建造-验证策略,用于 3D 打印前交叉韧带止点重建的生物玻璃梯度

Design-Build-Validate Strategy to 3D Print Bioglass Gradients for Anterior Cruciate Ligament Enthesis Reconstruction.

机构信息

Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida, USA.

出版信息

Tissue Eng Part C Methods. 2022 Apr;28(4):158-167. doi: 10.1089/ten.TEC.2022.0035.

Abstract

A rupture of the anterior cruciate ligament (ACL) is one of the most common knee ligament injuries affecting the young and active population. Tissue engineering strategies to reconstruct the damaged ACL have met with significant challenges mainly associated with poor graft integration at the bone-ligament interface (i.e., enthesis). In this study, a "design-build-validate" strategy was employed by combining 3D Raman spectral mapping and 3D printing to develop a tissue engineered scaffold that is compositionally similar to the ACL bone-ligament interface and can provide the essential biochemical cues to promote interface regeneration and facilitate functional graft to bone integration. Results showed that Raman spectroscopy is a highly efficient nondestructive technique to determine the biochemical composition of native ACL enthesis. 3D printing using combinatory inks consisting of different compositions of methacrylated collagen (CMA) and Bioglass (BG) allowed for the fabrication of BG gradient-incorporated collagen matrices (BioGIMs) with a transition region confirmed by Alizarin red S staining. Furthermore, Raman spectroscopy validated replication of ACL enthesis composition in BioGIMs. In addition, human mesenchymal stem cells (hMSCs) cultured on BioGIMs showed morphological differences along the length of the BioGIMs as evidenced by confocal microscopy of cell cytoskeleton-stained images indicating that the cells can sense the underlying differences in matrix composition. Overall, the "design-build-validate" strategy developed in this study has significant potential to generate biomimetic tissue constructs for use at the interface regions of synthetic grafts to promote better host integration and achieve full reconstruction of the ACL. Impact statement Poor graft integration at the bone-ligament interface (i.e., enthesis) is a significant clinical problem in anterior cruciate ligament (ACL) repair and reconstruction. In this study, Raman spectroscopy and 3D printing technologies were used in combination for the first time in a design-build-validate strategy to develop a continuous biomimetic Bioglass gradient-incorporated collagen matrix (BioGIM) that compositionally emulates the native ACL enthesis. These BioGIMs can be fused onto the ends of synthetic ACL grafts and have significant potential to provide the essential biochemical cues to guide tissue-specific cell differentiation, augment functional matrix reorganization, promote better graft integration, and achieve full reconstruction of damaged ACL.

摘要

前交叉韧带(ACL)撕裂是影响年轻和活跃人群的最常见膝关节韧带损伤之一。用于重建受损 ACL 的组织工程策略遇到了重大挑战,主要与骨-韧带界面(即结合处)的移植物整合不良有关。在这项研究中,通过结合 3D 拉曼光谱映射和 3D 打印,采用“设计-构建-验证”策略,开发了一种组织工程支架,其组成与 ACL 骨-韧带结合处相似,并能提供必要的生化线索,以促进界面再生并促进功能移植物与骨的整合。结果表明,拉曼光谱是一种高效的非破坏性技术,可用于确定天然 ACL 结合处的生化组成。使用由不同甲基丙烯酰化胶原(CMA)和 Bioglass(BG)组成的组合油墨进行 3D 打印,允许制造具有通过茜素红 S 染色确认的过渡区域的 BG 梯度掺入胶原基质(BioGIMs)。此外,拉曼光谱验证了 BioGIMs 中 ACL 结合处组成的复制。此外,在 BioGIMs 上培养的人骨髓间充质干细胞(hMSC)沿 BioGIMs 的长度表现出形态差异,这通过细胞骨架染色图像的共聚焦显微镜证实,表明细胞可以感知基质组成的潜在差异。总体而言,本研究中开发的“设计-构建-验证”策略具有很大的潜力,可以生成仿生组织构建体,用于合成移植物的界面区域,以促进更好的宿主整合并实现 ACL 的完全重建。

影响陈述在骨-韧带界面(即结合处)的移植物整合不良是前交叉韧带(ACL)修复和重建中的一个重大临床问题。在这项研究中,拉曼光谱和 3D 打印技术首次结合使用,采用“设计-构建-验证”策略,开发了一种连续仿生 Bioglass 梯度掺入胶原基质(BioGIM),其组成模拟天然 ACL 结合处。这些 BioGIMs 可以融合到合成 ACL 移植物的末端,具有很大的潜力,可以提供必要的生化线索来指导组织特异性细胞分化,增强功能基质重组,促进更好的移植物整合,并实现受损 ACL 的完全重建。

相似文献

1
Design-Build-Validate Strategy to 3D Print Bioglass Gradients for Anterior Cruciate Ligament Enthesis Reconstruction.
Tissue Eng Part C Methods. 2022 Apr;28(4):158-167. doi: 10.1089/ten.TEC.2022.0035.
2
Anatomical Tissue Engineering of the Anterior Cruciate Ligament Entheses.
Int J Mol Sci. 2023 Jun 5;24(11):9745. doi: 10.3390/ijms24119745.
3
Osteointegration of a Novel Silk Fiber-Based ACL Scaffold by Formation of a Ligament-Bone Interface.
Am J Sports Med. 2019 Mar;47(3):620-627. doi: 10.1177/0363546518818792. Epub 2019 Jan 17.
5
Anterior Cruciate Ligament-Derived Stem Cells Transduced With BMP2 Accelerate Graft-Bone Integration After ACL Reconstruction.
Am J Sports Med. 2017 Mar;45(3):584-597. doi: 10.1177/0363546516671707. Epub 2016 Dec 14.
6
In Vitro and In Vivo Performance of Tissue-Engineered Tendons for Anterior Cruciate Ligament Reconstruction.
Am J Sports Med. 2018 Jun;46(7):1641-1649. doi: 10.1177/0363546518759729. Epub 2018 Mar 26.
8
Stratified scaffold design for engineering composite tissues.
Methods. 2015 Aug;84:99-102. doi: 10.1016/j.ymeth.2015.03.029. Epub 2015 Apr 3.
10
Ectopic tissue engineered ligament with silk collagen scaffold for ACL regeneration: A preliminary study.
Acta Biomater. 2017 Apr 15;53:307-317. doi: 10.1016/j.actbio.2017.02.027. Epub 2017 Feb 16.

引用本文的文献

1
Hierarchy Reproduction: Multiphasic Strategies for Tendon/Ligament-Bone Junction Repair.
Biomater Res. 2025 Jan 22;29:0132. doi: 10.34133/bmr.0132. eCollection 2025.
2
Could an Anterior Cruciate Ligament Be Tissue-Engineered from Silk?
Cells. 2023 Sep 25;12(19):2350. doi: 10.3390/cells12192350.
3
Anatomical Tissue Engineering of the Anterior Cruciate Ligament Entheses.
Int J Mol Sci. 2023 Jun 5;24(11):9745. doi: 10.3390/ijms24119745.
5
Scaffold-based tissue engineering strategies for soft-hard interface regeneration.
Regen Biomater. 2022 Nov 12;10:rbac091. doi: 10.1093/rb/rbac091. eCollection 2023.
6
Advanced strategies for constructing interfacial tissues of bone and tendon/ligament.
J Tissue Eng. 2022 Dec 23;13:20417314221144714. doi: 10.1177/20417314221144714. eCollection 2022 Jan-Dec.
7
Species-Based Differences in Mechanical Properties, Cytocompatibility, and Printability of Methacrylated Collagen Hydrogels.
Biomacromolecules. 2022 Dec 12;23(12):5137-5147. doi: 10.1021/acs.biomac.2c00985. Epub 2022 Nov 23.

本文引用的文献

1
Bioglass incorporated methacrylated collagen bioactive ink for 3D printing of bone tissue.
Biomed Mater. 2021 Feb 26;16(3). doi: 10.1088/1748-605X/abc744.
2
Directed differentiation of BMSCs on structural/compositional gradient nanofibrous scaffolds for ligament-bone osteointegration.
Mater Sci Eng C Mater Biol Appl. 2020 May;110:110711. doi: 10.1016/j.msec.2020.110711. Epub 2020 Jan 31.
3
Spreading Shape and Area Regulate the Osteogenesis of Mesenchymal Stem Cells.
Tissue Eng Regen Med. 2019 Aug 29;16(6):573-583. doi: 10.1007/s13770-019-00213-y. eCollection 2019 Dec.
5
Autograft or allograft for reconstruction of anterior cruciate ligament: a health economics perspective.
Knee Surg Sports Traumatol Arthrosc. 2019 Jun;27(6):1782-1790. doi: 10.1007/s00167-019-05436-z. Epub 2019 Mar 14.
6
Physiology and Engineering of the Graded Interfaces of Musculoskeletal Junctions.
Annu Rev Biomed Eng. 2018 Jun 4;20:403-429. doi: 10.1146/annurev-bioeng-062117-121113. Epub 2018 Apr 11.
7
Integrating soft and hard tissues via interface tissue engineering.
J Orthop Res. 2018 Apr;36(4):1069-1077. doi: 10.1002/jor.23810. Epub 2018 Jan 5.
8
Functional regeneration of ligament-bone interface using a triphasic silk-based graft.
Biomaterials. 2016 Nov;106:180-92. doi: 10.1016/j.biomaterials.2016.08.012. Epub 2016 Aug 9.
9
Saos-2 cell-mediated mineralization on collagen gels: Effect of densification and bioglass incorporation.
J Biomed Mater Res A. 2016 May;104(5):1121-34. doi: 10.1002/jbm.a.35651. Epub 2016 Jan 30.
10
Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels.
Sci Adv. 2015 Oct 23;1(9):e1500758. doi: 10.1126/sciadv.1500758. eCollection 2015 Oct.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验