Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322.
Graduate Program in Biochemistry, Cell and Developmental Biology, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA 30322.
Proc Natl Acad Sci U S A. 2022 Apr 5;119(14):e2120352119. doi: 10.1073/pnas.2120352119. Epub 2022 Mar 31.
Changes in bacterial ribosomal RNA (rRNA) methylation status can alter the activity of diverse groups of ribosome-targeting antibiotics. These modifications are typically incorporated by a single methyltransferase that acts on one nucleotide target and rRNA methylation directly prevents drug binding, thereby conferring drug resistance. Loss of intrinsic methylation can also result in antibiotic resistance. For example, Mycobacterium tuberculosis becomes sensitized to tuberactinomycin antibiotics, such as capreomycin and viomycin, due to the action of the intrinsic methyltransferase TlyA. TlyA is unique among antibiotic resistance-associated methyltransferases as it has dual 16S and 23S rRNA substrate specificity and can incorporate cytidine-2′-O-methylations within two structurally distinct contexts. Here, we report the structure of a mycobacterial 50S subunit-TlyA complex trapped in a postcatalytic state with a S-adenosyl-L-methionine analog using single-particle cryogenic electron microscopy. Together with complementary functional analyses, this structure reveals critical roles in 23S rRNA substrate recognition for conserved residues across an interaction surface that spans both TlyA domains. These interactions position the TlyA active site over the target nucleotide C2144, which is flipped from 23S Helix 69 in a process stabilized by stacking of TlyA residue Phe157 on the adjacent A2143. Base flipping may thus be a common strategy among rRNA methyltransferase enzymes, even in cases where the target site is accessible without such structural reorganization. Finally, functional studies with 30S subunit suggest that the same TlyA interaction surface is employed to recognize this second substrate, but with distinct dependencies on essential conserved residues.
细菌核糖体 RNA(rRNA)甲基化状态的变化会改变核糖体靶向抗生素的多种活性。这些修饰通常由单个甲基转移酶进行,该酶作用于一个核苷酸靶点,rRNA 甲基化直接阻止药物结合,从而赋予药物抗性。内在甲基化的丧失也可能导致抗生素耐药性。例如,由于内在甲基转移酶 TlyA 的作用,结核分枝杆菌对结核放线菌素类抗生素(如卷曲霉素和威霉素)变得敏感。TlyA 在抗生素耐药相关甲基转移酶中是独特的,因为它具有双重 16S 和 23S rRNA 底物特异性,并能在两个结构上不同的环境中掺入胞嘧啶-2′-O-甲基化。在这里,我们使用单颗粒低温电子显微镜报告了一个结核分枝杆菌 50S 亚基-TlyA 复合物在使用 S-腺苷-L-甲硫氨酸类似物的后催化状态下的结构。与互补的功能分析相结合,该结构揭示了保守残基在 23S rRNA 底物识别中的关键作用,这些残基跨越了 TlyA 结构域的相互作用表面。这些相互作用将 TlyA 的活性位点定位在靶核苷酸 C2144 上,该核苷酸从 23S 螺旋 69 翻转,这一过程由 TlyA 残基 Phe157 与相邻的 A2143 之间的堆积稳定。因此,碱基翻转可能是 rRNA 甲基转移酶酶的一种常见策略,即使在不需要这种结构重排即可获得靶位点的情况下也是如此。最后,与 30S 亚基的功能研究表明,相同的 TlyA 相互作用表面被用于识别第二个底物,但对关键保守残基有不同的依赖性。