Suppr超能文献

4D 图谱:纵向 3D 形状数据时空可变性的统计分析。

4D Atlas: Statistical Analysis of the Spatiotemporal Variability in Longitudinal 3D Shape Data.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2023 Feb;45(2):1335-1352. doi: 10.1109/TPAMI.2022.3163720. Epub 2023 Jan 6.

Abstract

We propose a novel framework to learn the spatiotemporal variability in longitudinal 3D shape data sets, which contain observations of objects that evolve and deform over time. This problem is challenging since surfaces come with arbitrary parameterizations and thus, they need to be spatially registered. Also, different deforming objects, hereinafter referred to as 4D surfaces, evolve at different speeds and thus they need to be temporally aligned. We solve this spatiotemporal registration problem using a Riemannian approach. We treat a 3D surface as a point in a shape space equipped with an elastic Riemannian metric that measures the amount of bending and stretching that the surfaces undergo. A 4D surface can then be seen as a trajectory in this space. With this formulation, the statistical analysis of 4D surfaces can be cast as the problem of analyzing trajectories embedded in a nonlinear Riemannian manifold. However, performing the spatiotemporal registration, and subsequently computing statistics, on such nonlinear spaces is not straightforward as they rely on complex nonlinear optimizations. Our core contribution is the mapping of the surfaces to the space of Square-Root Normal Fields (SRNF) where the [Formula: see text] metric is equivalent to the partial elastic metric in the space of surfaces. Thus, by solving the spatial registration in the SRNF space, the problem of analyzing 4D surfaces becomes the problem of analyzing trajectories embedded in the SRNF space, which has a euclidean structure. In this paper, we develop the building blocks that enable such analysis. These include: (1) the spatiotemporal registration of arbitrarily parameterized 4D surfaces even in the presence of large elastic deformations and large variations in their execution rates; (2) the computation of geodesics between 4D surfaces; (3) the computation of statistical summaries, such as means and modes of variation, of collections of 4D surfaces; and (4) the synthesis of random 4D surfaces. We demonstrate the performance of the proposed framework using 4D facial surfaces and 4D human body shapes.

摘要

我们提出了一种新的框架来学习纵向 3D 形状数据集的时空可变性,这些数据集包含随时间演变和变形的物体的观测结果。这个问题具有挑战性,因为曲面具有任意参数化,因此需要进行空间配准。此外,不同的变形物体,以下简称 4D 曲面,以不同的速度演变,因此需要进行时间对准。我们使用黎曼方法解决这个时空配准问题。我们将 3D 曲面视为配备弹性黎曼度量的形状空间中的一个点,该度量测量曲面经历的弯曲和拉伸量。然后,可以将 4D 曲面视为该空间中的轨迹。通过这种表述,可以将 4D 曲面的统计分析表述为分析嵌入非线性黎曼流形中的轨迹的问题。然而,在这种非线性空间上执行时空配准并随后进行统计计算并不简单,因为它们依赖于复杂的非线性优化。我们的核心贡献是将曲面映射到平方根法向场 (SRNF) 空间,其中 [Formula: see text] 度量等效于曲面空间中的部分弹性度量。因此,通过在 SRNF 空间中解决空间配准问题,分析 4D 曲面的问题就变成了分析嵌入 SRNF 空间中的轨迹的问题,该空间具有欧几里得结构。在本文中,我们开发了实现这种分析的构建块。这些包括:(1)即使在存在大弹性变形和大执行率变化的情况下,对任意参数化的 4D 曲面进行时空配准;(2)计算 4D 曲面之间的测地线;(3)计算 4D 曲面集合的统计摘要,例如均值和变化模式;(4)随机 4D 曲面的合成。我们使用 4D 面部曲面和 4D 人体形状演示了所提出框架的性能。

相似文献

1
4D Atlas: Statistical Analysis of the Spatiotemporal Variability in Longitudinal 3D Shape Data.4D 图谱:纵向 3D 形状数据时空可变性的统计分析。
IEEE Trans Pattern Anal Mach Intell. 2023 Feb;45(2):1335-1352. doi: 10.1109/TPAMI.2022.3163720. Epub 2023 Jan 6.
2
Numerical Inversion of SRNF Maps for Elastic Shape Analysis of Genus-Zero Surfaces.用于零亏格曲面弹性形状分析的 SRNF 图谱数值反演。
IEEE Trans Pattern Anal Mach Intell. 2017 Dec;39(12):2451-2464. doi: 10.1109/TPAMI.2016.2647596. Epub 2017 Jan 5.
3
Elastic geodesic paths in shape space of parameterized surfaces.参数化曲面形状空间中的弹性测地线路径。
IEEE Trans Pattern Anal Mach Intell. 2012 Sep;34(9):1717-30. doi: 10.1109/TPAMI.2011.233.
4
Elastic Functional Coding of Riemannian Trajectories.黎曼轨迹的弹性功能编码。
IEEE Trans Pattern Anal Mach Intell. 2017 May;39(5):922-936. doi: 10.1109/TPAMI.2016.2564409. Epub 2016 May 6.
5
Gauge Invariant Framework for Shape Analysis of Surfaces.曲面形状分析的量不变框架。
IEEE Trans Pattern Anal Mach Intell. 2016 Jan;38(1):46-59. doi: 10.1109/TPAMI.2015.2430319.
7
Shape Analysis of Elastic Curves in Euclidean Spaces.欧几里得空间中弹性曲线的形状分析。
IEEE Trans Pattern Anal Mach Intell. 2011 Jul;33(7):1415-28. doi: 10.1109/TPAMI.2010.184. Epub 2010 Oct 14.
8
Elastic Shape Analysis of Tree-Like 3D Objects Using Extended SRVF Representation.使用扩展的SRVF表示法对树状三维物体进行弹性形状分析。
IEEE Trans Pattern Anal Mach Intell. 2024 Apr;46(4):2475-2488. doi: 10.1109/TPAMI.2023.3334525. Epub 2024 Mar 6.
10
Ricci flow for 3D shape analysis.Ricci 流在 3D 形状分析中的应用。
IEEE Trans Pattern Anal Mach Intell. 2010 Apr;32(4):662-77. doi: 10.1109/TPAMI.2009.201.

本文引用的文献

1
A Survey on Deep Learning Techniques for Stereo-Based Depth Estimation.基于立体视觉的深度估计深度学习技术研究综述。
IEEE Trans Pattern Anal Mach Intell. 2022 Apr;44(4):1738-1764. doi: 10.1109/TPAMI.2020.3032602. Epub 2022 Mar 4.
3
Image-Based 3D Object Reconstruction: State-of-the-Art and Trends in the Deep Learning Era.基于图像的 3D 目标重建:深度学习时代的现状与趋势。
IEEE Trans Pattern Anal Mach Intell. 2021 May;43(5):1578-1604. doi: 10.1109/TPAMI.2019.2954885. Epub 2021 Apr 1.
4
Numerical Inversion of SRNF Maps for Elastic Shape Analysis of Genus-Zero Surfaces.用于零亏格曲面弹性形状分析的 SRNF 图谱数值反演。
IEEE Trans Pattern Anal Mach Intell. 2017 Dec;39(12):2451-2464. doi: 10.1109/TPAMI.2016.2647596. Epub 2017 Jan 5.
6
Learning spectral descriptors for deformable shape correspondence.学习可变形形状对应关系的光谱描述符。
IEEE Trans Pattern Anal Mach Intell. 2014 Jan;36(1):171-80. doi: 10.1109/TPAMI.2013.148.
7
Parameterization-invariant shape comparisons of anatomical surfaces.解剖面的参数不变形状比较。
IEEE Trans Med Imaging. 2011 Mar;30(3):849-58. doi: 10.1109/TMI.2010.2099130. Epub 2010 Dec 13.
8
Shape Analysis of Elastic Curves in Euclidean Spaces.欧几里得空间中弹性曲线的形状分析。
IEEE Trans Pattern Anal Mach Intell. 2011 Jul;33(7):1415-28. doi: 10.1109/TPAMI.2010.184. Epub 2010 Oct 14.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验