IEEE Trans Pattern Anal Mach Intell. 2023 Feb;45(2):1335-1352. doi: 10.1109/TPAMI.2022.3163720. Epub 2023 Jan 6.
We propose a novel framework to learn the spatiotemporal variability in longitudinal 3D shape data sets, which contain observations of objects that evolve and deform over time. This problem is challenging since surfaces come with arbitrary parameterizations and thus, they need to be spatially registered. Also, different deforming objects, hereinafter referred to as 4D surfaces, evolve at different speeds and thus they need to be temporally aligned. We solve this spatiotemporal registration problem using a Riemannian approach. We treat a 3D surface as a point in a shape space equipped with an elastic Riemannian metric that measures the amount of bending and stretching that the surfaces undergo. A 4D surface can then be seen as a trajectory in this space. With this formulation, the statistical analysis of 4D surfaces can be cast as the problem of analyzing trajectories embedded in a nonlinear Riemannian manifold. However, performing the spatiotemporal registration, and subsequently computing statistics, on such nonlinear spaces is not straightforward as they rely on complex nonlinear optimizations. Our core contribution is the mapping of the surfaces to the space of Square-Root Normal Fields (SRNF) where the [Formula: see text] metric is equivalent to the partial elastic metric in the space of surfaces. Thus, by solving the spatial registration in the SRNF space, the problem of analyzing 4D surfaces becomes the problem of analyzing trajectories embedded in the SRNF space, which has a euclidean structure. In this paper, we develop the building blocks that enable such analysis. These include: (1) the spatiotemporal registration of arbitrarily parameterized 4D surfaces even in the presence of large elastic deformations and large variations in their execution rates; (2) the computation of geodesics between 4D surfaces; (3) the computation of statistical summaries, such as means and modes of variation, of collections of 4D surfaces; and (4) the synthesis of random 4D surfaces. We demonstrate the performance of the proposed framework using 4D facial surfaces and 4D human body shapes.
我们提出了一种新的框架来学习纵向 3D 形状数据集的时空可变性,这些数据集包含随时间演变和变形的物体的观测结果。这个问题具有挑战性,因为曲面具有任意参数化,因此需要进行空间配准。此外,不同的变形物体,以下简称 4D 曲面,以不同的速度演变,因此需要进行时间对准。我们使用黎曼方法解决这个时空配准问题。我们将 3D 曲面视为配备弹性黎曼度量的形状空间中的一个点,该度量测量曲面经历的弯曲和拉伸量。然后,可以将 4D 曲面视为该空间中的轨迹。通过这种表述,可以将 4D 曲面的统计分析表述为分析嵌入非线性黎曼流形中的轨迹的问题。然而,在这种非线性空间上执行时空配准并随后进行统计计算并不简单,因为它们依赖于复杂的非线性优化。我们的核心贡献是将曲面映射到平方根法向场 (SRNF) 空间,其中 [Formula: see text] 度量等效于曲面空间中的部分弹性度量。因此,通过在 SRNF 空间中解决空间配准问题,分析 4D 曲面的问题就变成了分析嵌入 SRNF 空间中的轨迹的问题,该空间具有欧几里得结构。在本文中,我们开发了实现这种分析的构建块。这些包括:(1)即使在存在大弹性变形和大执行率变化的情况下,对任意参数化的 4D 曲面进行时空配准;(2)计算 4D 曲面之间的测地线;(3)计算 4D 曲面集合的统计摘要,例如均值和变化模式;(4)随机 4D 曲面的合成。我们使用 4D 面部曲面和 4D 人体形状演示了所提出框架的性能。