IEEE Trans Pattern Anal Mach Intell. 2017 Dec;39(12):2451-2464. doi: 10.1109/TPAMI.2016.2647596. Epub 2017 Jan 5.
Recent developments in elastic shape analysis (ESA) are motivated by the fact that it provides a comprehensive framework for simultaneous registration, deformation, and comparison of shapes. These methods achieve computational efficiency using certain square-root representations that transform invariant elastic metrics into euclidean metrics, allowing for the application of standard algorithms and statistical tools. For analyzing shapes of embeddings of in , Jermyn et al. [1] introduced square-root normal fields (SRNFs), which transform an elastic metric, with desirable invariant properties, into the metric. These SRNFs are essentially surface normals scaled by square-roots of infinitesimal area elements. A critical need in shape analysis is a method for inverting solutions (deformations, averages, modes of variations, etc.) computed in SRNF space, back to the original surface space for visualizations and inferences. Due to the lack of theory for understanding SRNF maps and their inverses, we take a numerical approach, and derive an efficient multiresolution algorithm, based on solving an optimization problem in the surface space, that estimates surfaces corresponding to given SRNFs. This solution is found to be effective even for complex shapes that undergo significant deformations including bending and stretching, e.g., human bodies and animals. We use this inversion for computing elastic shape deformations, transferring deformations, summarizing shapes, and for finding modes of variability in a given collection, while simultaneously registering the surfaces. We demonstrate the proposed algorithms using a statistical analysis of human body shapes, classification of generic surfaces, and analysis of brain structures.
弹性形状分析(ESA)的最新进展源于这样一个事实,即它为形状的同时配准、变形和比较提供了一个全面的框架。这些方法通过使用某些平方根表示来实现计算效率,这些表示将不变弹性度量转换为欧几里得度量,从而允许应用标准算法和统计工具。为了分析嵌入形状,Jermyn 等人 [1] 引入了平方根法向场(SRNF),它将具有理想不变性质的弹性度量转换为度量。这些 SRNF 本质上是通过平方根来缩放微小面积元素的表面法向。形状分析中的一个关键需求是一种方法,用于将在 SRNF 空间中计算的解(变形、平均值、变化模式等)反转回原始表面空间,以便进行可视化和推断。由于缺乏理解 SRNF 映射及其逆映射的理论,我们采取了数值方法,并基于在表面空间中解决优化问题,推导出一种有效的多分辨率算法,用于估计与给定 SRNF 对应的曲面。即使对于经历显著变形(包括弯曲和拉伸)的复杂形状,例如人体和动物,这种解决方案也很有效。我们使用这种反转来计算弹性形状变形、转移变形、总结形状,并在同时注册曲面的情况下找到给定集合中的变化模式。我们使用人体形状的统计分析、通用表面的分类和大脑结构的分析来演示所提出的算法。