Suppr超能文献

肠道标本组织学图像的深度学习分析揭示脂肪细胞萎缩和肥大细胞浸润以预测克罗恩病术后情况

Deep Learning Analysis of Histologic Images from Intestinal Specimen Reveals Adipocyte Shrinkage and Mast Cell Infiltration to Predict Postoperative Crohn Disease.

作者信息

Kiyokawa Hiroki, Abe Masatoshi, Matsui Takahiro, Kurashige Masako, Ohshima Kenji, Tahara Shinichiro, Nojima Satoshi, Ogino Takayuki, Sekido Yuki, Mizushima Tsunekazu, Morii Eiichi

机构信息

Department of Pathology, Osaka University Graduate School of Medicine, Osaka, Japan.

Department of Pathology, Osaka University Graduate School of Medicine, Osaka, Japan.

出版信息

Am J Pathol. 2022 Jun;192(6):904-916. doi: 10.1016/j.ajpath.2022.03.006. Epub 2022 Mar 28.

Abstract

Most patients with Crohn disease (CD), a chronic inflammatory gastrointestinal disease, experience recurrence despite treatment, including surgical resection. However, methods for predicting recurrence remain unclear. This study aimed to predict postoperative recurrence of CD by computational analysis of histopathologic images and to extract histologic characteristics associated with recurrence. A total of 68 patients who underwent surgical resection of the intestine were included in this study and were categorized into two groups according to the presence or absence of postoperative disease recurrence within 2 years after surgery. Recurrence was defined using the CD Activity Index and the Rutgeerts score. Whole-slide images of surgical specimens were analyzed using deep learning model EfficientNet-b5, which achieved a highly accurate prediction of recurrence (area under the curve, 0.995). Moreover, subserosal tissue images with adipose cells enabled highly accurate prediction. Adipose cell morphology showed significant between-group differences in adipose cell size, cell-to-cell distance, and cell flattening values. These findings suggest that adipocyte shrinkage is an important histologic characteristic associated with recurrence. Moreover, there was a significant between-group difference in the degree of mast cell infiltration in the subserosa. These findings show the importance of mesenteric adipose tissue in patient prognosis and CD pathophysiology. These findings also suggest that deep learning-based artificial intelligence enables the extraction of meaningful histologic features.

摘要

大多数患有克罗恩病(CD)的患者,一种慢性炎症性胃肠道疾病,尽管接受了包括手术切除在内的治疗,仍会复发。然而,预测复发的方法仍不明确。本研究旨在通过对组织病理学图像的计算分析来预测CD术后复发,并提取与复发相关的组织学特征。本研究共纳入68例接受肠道手术切除的患者,并根据术后2年内是否存在疾病复发分为两组。复发采用CD活动指数和 Rutgeerts评分进行定义。使用深度学习模型EfficientNet-b5对手术标本的全切片图像进行分析,该模型对复发的预测准确率很高(曲线下面积,0.995)。此外,含有脂肪细胞的浆膜下组织图像能够实现高度准确的预测。脂肪细胞形态在脂肪细胞大小、细胞间距离和细胞扁平化值方面存在显著的组间差异。这些发现表明脂肪细胞萎缩是与复发相关的重要组织学特征。此外,浆膜下肥大细胞浸润程度在组间存在显著差异。这些发现表明肠系膜脂肪组织在患者预后和CD病理生理学中的重要性。这些发现还表明基于深度学习的人工智能能够提取有意义的组织学特征。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验