Suppr超能文献

基于导丝压力数据和计算模型的颈动脉狭窄血流动力学重建。

Reconstruction of carotid stenosis hemodynamics based on guidewire pressure data and computational modeling.

机构信息

Physics and Biology in Medicine Graduate Program, Division of Interventional Neuroradiology, Department of Radiological Sciences, Ronald Reagan UCLA Medical Center, David Geffen UCLA School of Medicine, Los Angeles, USA.

出版信息

Med Biol Eng Comput. 2022 May;60(5):1253-1268. doi: 10.1007/s11517-021-02463-2. Epub 2022 Mar 31.

Abstract

A comparative analysis between intravascular guidewire-obtained and computational fluid dynamic (CFD) flow velocity and pressure data using simplified carotid stenosis models was performed. This information was used to evaluate the viability of using guidewire pressure data to provide inlet conditions for CFD flow, and to study the relationship between stenotic length and hemodynamic behavior. Carotid stenosis models differing in diameter and length were prepared and connected to a vascular pulsatile flow simulator. Time-dependent flow velocity and pressure measurements were taken by microcatheter guidewires and compared with CFD data. Guidewire and CFD-generated pressure profiles matched closely in all measurement locations. The guidewire was unable to reliably measure flow velocity at areas associated with higher CFD flow velocities (r = 0.92). CFD results showed that an increased length of stenosis generated expansive regions of elevated wall shear stress (WSS) within and distal to the stenosis. Low WSS was found immediately outside the stenosis outlet. An increase in stenotic length produced higher flow velocities with minimal lengthening of the distal high velocity flow jet due to faster dissipation of translational kinetic energy through turbulence. We found the accuracy of guidewire-obtained velocity measurements is limited to regions unaffected by disturbed flow. WSS and turbulence behavior distal to the stenosis may be important markers to evaluate the severity of atherosclerotic progression as a function of stenotic length.

摘要

采用简化颈动脉狭窄模型,对血管内导丝获取的血流速度和压力数据与计算流体动力学(CFD)数据进行了对比分析。利用导丝压力数据为 CFD 血流提供入口条件的可行性,并研究狭窄长度与血液动力学行为之间的关系,这是利用了这些信息。制备了直径和长度不同的颈动脉狭窄模型,并将其连接到血管脉动流模拟器上。通过微导管导丝进行了时变流速和压力测量,并与 CFD 数据进行了比较。在所有测量位置,导丝和 CFD 生成的压力曲线都非常吻合。导丝无法可靠地测量与更高 CFD 流速相关的区域的流速(r = 0.92)。CFD 结果表明,狭窄长度的增加会在狭窄处和狭窄处远端产生壁面切应力(WSS)升高的扩张区域。在狭窄出口外立即发现低 WSS。由于湍流导致平移动能更快耗散,狭窄长度的增加会产生更高的流速,而远端高速射流的长度变化很小。我们发现导丝获得的速度测量的准确性仅限于不受扰流影响的区域。狭窄处远端的 WSS 和湍流行为可能是评估狭窄长度作为动脉粥样硬化进展严重程度的重要指标。

相似文献

2
Assessment of boundary conditions for CFD simulation in human carotid artery.评估人体颈动脉 CFD 模拟的边界条件。
Biomech Model Mechanobiol. 2018 Dec;17(6):1581-1597. doi: 10.1007/s10237-018-1045-4. Epub 2018 Jul 7.
3

本文引用的文献

3
Assessment of boundary conditions for CFD simulation in human carotid artery.评估人体颈动脉 CFD 模拟的边界条件。
Biomech Model Mechanobiol. 2018 Dec;17(6):1581-1597. doi: 10.1007/s10237-018-1045-4. Epub 2018 Jul 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验