文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Machine Learning and Deep Learning Applications in Metagenomic Taxonomy and Functional Annotation.

作者信息

Mathieu Alban, Leclercq Mickael, Sanabria Melissa, Perin Olivier, Droit Arnaud

机构信息

Computational Biology Laboratory, CHU de Québec - Université Laval Research Centre, Québec City, QC, Canada.

Université Côte d'Azur, CNRS, INRIA, I3S, Nice, France.

出版信息

Front Microbiol. 2022 Mar 14;13:811495. doi: 10.3389/fmicb.2022.811495. eCollection 2022.


DOI:10.3389/fmicb.2022.811495
PMID:35359727
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8964132/
Abstract

Shotgun sequencing of environmental DNA (i.e., metagenomics) has revolutionized the field of environmental microbiology, allowing the characterization of all microorganisms in a sequencing experiment. To identify the microbes in terms of taxonomy and biological activity, the sequenced reads must necessarily be aligned on known microbial genomes/genes. However, current alignment methods are limited in terms of speed and can produce a significant number of false positives when detecting bacterial species or false negatives in specific cases (virus, plasmids, and gene detection). Moreover, recent advances in metagenomics have enabled the reconstruction of new genomes using binning strategies, but these genomes, not yet fully characterized, are not used in classic approaches, whereas machine and deep learning methods can use them as models. In this article, we attempted to review the different methods and their efficiency to improve the annotation of metagenomic sequences. Deep learning models have reached the performance of the widely used k-mer alignment-based tools, with better accuracy in certain cases; however, they still must demonstrate their robustness across the variety of environmental samples and across the rapid expansion of accessible genomes in databases.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d28a/8964132/3bfc18bc2ced/fmicb-13-811495-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d28a/8964132/a3467fb11737/fmicb-13-811495-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d28a/8964132/3bfc18bc2ced/fmicb-13-811495-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d28a/8964132/a3467fb11737/fmicb-13-811495-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d28a/8964132/3bfc18bc2ced/fmicb-13-811495-g002.jpg

相似文献

[1]
Machine Learning and Deep Learning Applications in Metagenomic Taxonomy and Functional Annotation.

Front Microbiol. 2022-3-14

[2]
Deep learning models for bacteria taxonomic classification of metagenomic data.

BMC Bioinformatics. 2018-7-9

[3]
Evaluating metagenomics tools for genome binning with real metagenomic datasets and CAMI datasets.

BMC Bioinformatics. 2020-7-28

[4]
MetaVW: Large-Scale Machine Learning for Metagenomics Sequence Classification.

Methods Mol Biol. 2018

[5]
Large-scale machine learning for metagenomics sequence classification.

Bioinformatics. 2016-4-1

[6]
METAnnotatorX2: a Comprehensive Tool for Deep and Shallow Metagenomic Data Set Analyses.

mSystems. 2021-6-29

[7]
MSPminer: abundance-based reconstitution of microbial pan-genomes from shotgun metagenomic data.

Bioinformatics. 2019-5-1

[8]
Selection of marker genes for genetic barcoding of microorganisms and binning of metagenomic reads by Barcoder software tools.

BMC Bioinformatics. 2018-8-30

[9]
MBMC: An Effective Markov Chain Approach for Binning Metagenomic Reads from Environmental Shotgun Sequencing Projects.

OMICS. 2016-8

[10]
Comprehensive benchmarking and ensemble approaches for metagenomic classifiers.

Genome Biol. 2017-9-21

引用本文的文献

[1]
Hybrid Deep Learning Framework for High-Accuracy Classification of Morphologically Similar Puffball Species Using CNN and Transformer Architectures.

Biology (Basel). 2025-7-5

[2]
Genome-resolved metagenomics from short-read sequencing data in the era of artificial intelligence.

Funct Integr Genomics. 2025-6-10

[3]
Cutting-edge deep-learning based tools for metagenomic research.

Natl Sci Rev. 2025-2-19

[4]
Reveal your microbes, and i'll reveal your origins: geographical traceability via Scomber colias intestinal tract metagenomics.

Anim Microbiome. 2025-5-6

[5]
FGeneBERT: function-driven pre-trained gene language model for metagenomics.

Brief Bioinform. 2025-3-4

[6]
A review of neural networks for metagenomic binning.

Brief Bioinform. 2025-3-4

[7]
Deep learning in microbiome analysis: a comprehensive review of neural network models.

Front Microbiol. 2025-1-22

[8]
Impact of database choice and confidence score on the performance of taxonomic classification using Kraken2.

aBIOTECH. 2024-7-31

[9]
Artificial intelligence and bioinformatics: a journey from traditional techniques to smart approaches.

Gastroenterol Hepatol Bed Bench. 2024

[10]
Human Gut Microbiota for Diagnosis and Treatment of Depression.

Int J Mol Sci. 2024-5-26

本文引用的文献

[1]
A guide to machine learning for biologists.

Nat Rev Mol Cell Biol. 2022-1

[2]
Integrating taxonomic, functional, and strain-level profiling of diverse microbial communities with bioBakery 3.

Elife. 2021-5-4

[3]
DeepMicrobes: taxonomic classification for metagenomics with deep learning.

NAR Genom Bioinform. 2020-2-19

[4]
The Gene Ontology resource: enriching a GOld mine.

Nucleic Acids Res. 2021-1-8

[5]
UniProt: the universal protein knowledgebase in 2021.

Nucleic Acids Res. 2021-1-8

[6]
Metagenomic assessment of the global diversity and distribution of bacteria and fungi.

Environ Microbiol. 2021-1

[7]
Pfam: The protein families database in 2021.

Nucleic Acids Res. 2021-1-8

[8]
Resisting antimicrobial resistance.

Nat Rev Microbiol. 2020-5

[9]
Pre- and post-sequencing recommendations for functional annotation of human fecal metagenomes.

BMC Bioinformatics. 2020-2-24

[10]
Improved metagenomic analysis with Kraken 2.

Genome Biol. 2019-11-28

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索