Jamialahmadi Hamid, Khalili-Tanha Ghazaleh, Nazari Elham, Rezaei-Tavirani Mostafa
Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
These authors equally contributed to this study as the first authors.
Gastroenterol Hepatol Bed Bench. 2024;17(3):241-252. doi: 10.22037/ghfbb.v17i3.2977.
The incorporation of AI models into bioinformatics has brought about a revolutionary era in the analysis and interpretation of biological data. This mini-review offers a succinct overview of the indispensable role AI plays in the convergence of computational techniques and biological research. The search strategy followed PRISMA guidelines, encompassing databases such as PubMed, Embase, and Google Scholar to include studies published between 2018 and 2024, utilizing specific keywords. We explored the diverse applications of AI methodologies, including machine learning (ML), deep learning (DL), and natural language processing (NLP), across various domains of bioinformatics. These domains encompass genome sequencing, protein structure prediction, drug discovery, systems biology, personalized medicine, imaging, signal processing, and text mining. AI algorithms have exhibited remarkable efficacy in tackling intricate biological challenges, spanning from genome sequencing to protein structure prediction, and from drug discovery to personalized medicine. In conclusion, this study scrutinizes the evolving landscape of AI-driven tools and algorithms, emphasizing their pivotal role in expediting research, facilitating data interpretation, and catalyzing innovations in biomedical sciences.
将人工智能模型整合到生物信息学中,为生物数据的分析和解读带来了一个革命性的时代。这篇小型综述简要概述了人工智能在计算技术与生物学研究融合中所发挥的不可或缺的作用。检索策略遵循PRISMA指南,涵盖了诸如PubMed、Embase和谷歌学术等数据库,使用特定关键词纳入2018年至2024年间发表的研究。我们探讨了人工智能方法(包括机器学习(ML)、深度学习(DL)和自然语言处理(NLP))在生物信息学各个领域的不同应用。这些领域包括基因组测序、蛋白质结构预测、药物发现、系统生物学、个性化医疗、成像、信号处理和文本挖掘。人工智能算法在应对复杂的生物学挑战方面展现出了显著成效,涵盖从基因组测序到蛋白质结构预测,以及从药物发现到个性化医疗等领域。总之,本研究审视了人工智能驱动的工具和算法不断变化的格局,强调了它们在加速研究、促进数据解读以及推动生物医学科学创新方面的关键作用。